Characterizations of the Calabi Product of Hyperbolic Affine Hyperspheres

被引:0
作者
Zejun Hu
Haizhong Li
Luc Vrancken
机构
[1] Zhengzhou University,Department of Mathematics
[2] Tsinghua University,Department of Mathematical Sciences
[3] Universite de Valenciennes,LAMATH, ISTV2
来源
Results in Mathematics | 2008年 / 52卷
关键词
53A15; Affine hypersphere; Calabi product; affine hypersurface;
D O I
暂无
中图分类号
学科分类号
摘要
There exists a well known construction which allows to associate with two hyperbolic affine hyperspheres \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{i} : M^{n_{i}}_{i} \rightarrow {\mathbb{R}}^{n_{i}+1}$$\end{document} a new hyperbolic affine hypersphere immersion of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \times M_{1} \times M_{2}$$\end{document} into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{n_{1}+n_{2}+2}$$\end{document}. In this paper we deal with the inverse problem: how to determine from properties of the difference tensor whether a given hyperbolic affine hypersphere immersion of a manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{n} \rightarrow R^{n+1}$$\end{document} can be decomposed in such a way.
引用
收藏
页码:299 / 314
页数:15
相关论文
empty
未找到相关数据