There exists a well known construction which allows to associate with two hyperbolic affine hyperspheres \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{i} :
M^{n_{i}}_{i} \rightarrow {\mathbb{R}}^{n_{i}+1}$$\end{document} a new hyperbolic affine hypersphere immersion of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I \times M_{1}
\times M_{2}$$\end{document} into \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}}^{n_{1}+n_{2}+2}$$\end{document}. In this paper we deal with the inverse problem: how to determine from properties of the difference tensor whether a given hyperbolic affine hypersphere immersion of a manifold \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M^{n} \rightarrow
R^{n+1}$$\end{document} can be decomposed in such a way.