Let G be a graph with vertex set V(G) and edge set E(G), and let f be an integer-valued function defined on V(G). It is proved in this paper that every bipartite (0,mf-m+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(0,mf-m+1)$$\end{document}-graph has a (0, f)-factorization randomly r-orthogonal to n vertex-disjoint mr-subgraphs of G, which is a generalization of the known result with n=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n=1$$\end{document} given by Zhou and Wu.
机构:
Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R ChinaJiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
Zhou, Sizhong
Zong, Minggang
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ, Fac Sci, Zhejiang 212013, Jiangsu, Peoples R ChinaJiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China