Test by adaptive LASSO quantile method for real-time detection of a change-point

被引:0
作者
Gabriela Ciuperca
机构
[1] Université de Lyon,CNRS, UMR 5208, Institut Camille Jordan
[2] Université Lyon 1,undefined
来源
Metrika | 2018年 / 81卷
关键词
Real-time detection; Adaptive LASSO; Quantile; Asymptotic behavior; 62F05; 62F35;
D O I
暂无
中图分类号
学科分类号
摘要
This article proposes a test statistic based on the adaptive LASSO quantile method to detect in real-time a change in a linear model. The model can have a large number of explanatory variables and the errors don’t satisfy the classical assumptions for a statistical model. For the proposed test statistic, the asymptotic distribution under H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0$$\end{document} is obtained and the divergence under H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_1$$\end{document} is shown. It is shown via Monte Carlo simulations, in terms of empirical sizes, of empirical powers and of stopping time detection, that the useful test statistic for applications is better than other test statistics proposed in literature. Two applications on the air pollution and in the health field data are also considered.
引用
收藏
页码:689 / 720
页数:31
相关论文
共 43 条
[1]  
Ciuperca G(2013)Two tests for sequential detection of a change-point in a nonlinear model J Stat Plann Inference 143 1621-1834
[2]  
Ciuperca G(2015)Real time change-point detection in a model by adaptive LASSO and CUSUM Journal de la Société Francaise de Statistique 156 113-132
[3]  
Ciuperca G(2016)Adaptive LASSO model selection in a multiphase quantile regression Statistics 50 1100-1131
[4]  
Ciuperca G(2016)Empirical likelihood test for high-dimensional two-sample model J Stat Plann Inference 178 37-60
[5]  
Salloum Z(2017)Real time change-point detection in a nonlinear quantile model Sequ Anal 36 1-23
[6]  
Ciuperca G(2004)Monitoring changes in linear models J Stat Plann Inference 126 225-251
[7]  
Horváth L(2012)Bootstrapping sequential change-point tests for linear regression Metrika 75 673-708
[8]  
Hušková M(2000)Asymptotics for LASSO-type estimators Ann Stat 28 1356-1378
[9]  
Kokoszka P(1975)An approximation of partial sums of independent RV’s, and the sample DF. I Z. Wahrsch. Verw. Gebiete 32 111-131
[10]  
Steinebach J(1976)An approximation of partial sums of independent RV’s, and the sample DF. II Z. Wahrsch. Verw. Gebiete 34 33-58