Periodic shadowing and Ω-stability

被引:0
作者
A. V. Osipov
S. Yu. Pilyugin
S. B. Tikhomirov
机构
[1] St. Petersburg State University,Faculty of Mathematics and Mechanics
[2] National Taiwan University,Dept. of Math.
来源
Regular and Chaotic Dynamics | 2010年 / 15卷
关键词
periodic shadowing; hyperbolicity; Ω-stability; 37C50; 37D20;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the following three properties of a diffeomorphism f of a smooth closed manifold are equivalent: (i) f belongs to the C1-interior of the set of diffeomorphisms having the periodic shadowing property; (ii) f has the Lipschitz periodic shadowing property; (iii) f is Ω-stable.
引用
收藏
页码:404 / 417
页数:13
相关论文
共 16 条
[1]  
Robinson C.(1977)Stability Theorems and Hyperbolicity in Dynamical Systems Rocky Mountain J. Math. 7 425-437
[2]  
Sawada K.(1980)Extended Nagoya Math. J. 79 33-45
[3]  
Kościelniak P.(2005)-Orbits Are Approximated by Orbits J. Math. Anal. Appl. 310 188-196
[4]  
Sakai K.(1994)On Genericity of Shadowing and Periodic Shadowing Property Osaka J. Math. 31 373-386
[5]  
Pilyugin S.Yu.(2003)Pseudo-Orbit Tracing Property and Strong Transversality of Diffeomorphisms on Closed Manifolds Discrete and Contin. Dyn. Syst. 9 287-308
[6]  
Rodionova A.A.(2007)Orbital and Weak Shadowing Properties Discrete and Contin. Dyn. Syst. 17 223-245
[7]  
Sakai K.(2003)Pseudo-Orbit Shadowing in the Discrete and Contin. Dyn. Syst. 9 287-308
[8]  
Abdenur F.(1999) Topology Mat. Zametki 65 477-480
[9]  
Díaz L. J.(1992)Transversality Properties and Bol. Soc. Brasil. Mat. (N. S.) 23 21-65
[10]  
Pilyugin S.Yu.(1992)-Open Sets of Diffeomorphisms with Weak Shadowing Ergodic Theory Dynam. Systems 12 233-253