Clifford algebras of hyperbolic involutions

被引:0
作者
R. Skip Garibaldi
机构
[1] UCLA,
[2] Department of Mathematics,undefined
[3] Los Angeles,undefined
[4] California 90095-1555,undefined
[5] USA (e-mail: skip@member.ams.org) ,undefined
来源
Mathematische Zeitschrift | 2001年 / 236卷
关键词
Clifford Algebra; Simple Algebra; Interesting Part; Central Simple Algebra; Exterior Power;
D O I
暂无
中图分类号
学科分类号
摘要
For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\As$\end{document} a central simple algebra of even degree with hyperbolic orthogonal involution, we describe the canonically induced involution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\underline \sigma}$\end{document} on the even Clifford algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(C_0(A,\sigma),{\underline \sigma})$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(A,\sigma)$\end{document}. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\deg A \equiv 0 \mod{8}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A \cong M_2(B)$\end{document} and the interesting part of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\underline \sigma} $\end{document} is isomorphic to the canonical involution on an exterior power algebra of B. As a corollary, we get some properties of the involution on the exterior power algebra.
引用
收藏
页码:321 / 349
页数:28
相关论文
共 50 条
  • [31] The structure of norm Clifford algebras
    Keller, Hans A.
    Ochsenius, Herminia
    MATHEMATICA SLOVACA, 2012, 62 (06) : 1105 - 1120
  • [32] Ideal Structure of Clifford Algebras
    Zou, Yi Ming
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2009, 19 (01) : 147 - 153
  • [33] Orthogonal symmetries and Clifford algebras
    Mahmoudi, M. G.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (05): : 535 - 561
  • [34] Discrete Symmetries and Clifford Algebras
    V. V. Varlamov
    International Journal of Theoretical Physics, 2001, 40 : 769 - 805
  • [35] Tensor products of Clifford algebras
    N. G. Marchuk
    Doklady Mathematics, 2013, 87 : 185 - 188
  • [36] Extended Grassmann and Clifford Algebras
    R. da Rocha
    J. Vaz
    Advances in Applied Clifford Algebras, 2006, 16 : 103 - 125
  • [37] Mathematical structure of clifford algebras
    Porteous, I
    LECTURES ON CLIFFORD (GEOMETRIC) ALGEBRAS AND APPLICATIONS, 2004, : 31 - 52
  • [38] Method of Averaging in Clifford Algebras
    Shirokov, D. S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (01) : 149 - 163
  • [39] Classification of Extended Clifford Algebras
    Marchuk, N. G.
    RUSSIAN MATHEMATICS, 2018, 62 (11) : 23 - 27
  • [40] A NOTE ON THE REPRESENTATION OF CLIFFORD ALGEBRAS
    Gu, Ying-Qiu
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2021, 62 : 29 - 52