Normal form theory for reversible equivariant vector fields

被引:0
作者
Patricia H. Baptistelli
Miriam Manoel
Iris O. Zeli
机构
[1] UEM Av. Colombo,Department of Mathematics
[2] 5790,Department of Mathematics
[3] ICMC–USP C.P. 668,Department of Mathematics
[4] IMECC–UNICAMP C.P.,undefined
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2016年 / 47卷
关键词
normal form; reversibility; symmetry; homological operator; 7C80; 34C20; 13A50;
D O I
暂无
中图分类号
学科分类号
摘要
We give a method to obtain formal normal forms of reversible equivariant vector fields. The procedurewe present is based on the classical method of normal forms combined with tools from invariant theory. Normal forms of two classes of resonant cases are presented, both with linearization having a 2-dimensional nilpotent part and a semisimple part with purely imaginary eigenvalues.
引用
收藏
页码:935 / 954
页数:19
相关论文
共 25 条
  • [1] Antoneli F.(2009)Invariant theory and reversible equivariant vector fields Journal of Pure and Applied Algebra 213 649-663
  • [2] Baptistelli P.H.(1975)Critical points of smooth functions and their normal forms Russ. Math. Surv. 30 1-75
  • [3] Dias A.P.S.(2011)The σ-isotypic decomposition and the s-index of reversible equivariant systems Topology and its Applications 159 389-396
  • [4] Manoel M.G.(2013)Invariants and relative invariants under compact Lie groups Journal of Pure and Applied Algebra 217 2213-2220
  • [5] Arnold V.I.(2002)C∞-normal forms of local vector fields. Symmetry and perturbation theory Acta Appl. Math. 70 23-41
  • [6] Baptistelli P.H.(1912)Solution d’un système d’équations différentielles dans le voisinage de valeurs singulières Bull Soc. Math. Fr. 40 324-383
  • [7] Manoel M.G.(1987)A simple global characterization for normal forms of singular vector fields Physica 29D 95-127
  • [8] Baptistelli P.H.(2007)Normal form theory for relative equilibria and relative periodic solutions Trans. Amer. Math. Soc. 359 4537-4556
  • [9] Manoel M.G.(2009)Families of periodic orbits in resonant reversible systems Bull. Braz. Math. Soc., New Series 40 511-537
  • [10] Belitskii G.R.(2011)Reversible equivariant systems and matricial equations An. Acad. Bras. Ciênc. 83 375-390