Abelian ℓ-Groups with Strong Unit and Perfect MV-Algebras

被引:0
作者
Lawrence P. Belluce
Antonio Di Nola
Brunella Gerla
机构
[1] British Columbia University,Department of Mathematics
[2] University of Salerno,Department of Mathematics and Informatics
[3] University of Insubria,Department of Informatics and Communications
来源
Order | 2008年 / 25卷
关键词
Lattice-ordered groups; MV-algebras; Perfect MV-algebras;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the class of abelian ℓ-groups with strong unit corresponding to perfect MV-algebras via the Γ functor, showing that this is a universal subclass of the class of all abelian ℓ-groups with strong unit and describing the formulas that axiomatize it. We further describe results for classes of abelian ℓ-groups with strong unit corresponding to local MV-algebras with finite rank.
引用
收藏
页码:387 / 401
页数:14
相关论文
共 25 条
[1]  
Belluce L.P.(2007)Perfect MV-algebras and their logic Appl. Categ. Struct. 15 135-151
[2]  
Di Nola A.(1986)Semisimple algebras of infinite-valued logic Can. J. Math. 38 1356-1379
[3]  
Gerla B.(2000)The going up and going down theorems in MV-algebras and Abelian J. Math. Anal. Appl. 241 92-106
[4]  
Belluce L.P.(1963)-groups J. Symb. Log. 28 43-50
[5]  
Belluce L.P.(2003)A weak completeness theorem for infinite valued predicate logic Tatra Mt. Math. Publ. 27 7-22
[6]  
Belluce L.P.(1958)The MV-algebra of first order Łukasiewicz logic. General algebra and ordered sets Trans. Am. Math. Soc. 88 467-490
[7]  
Chang C.C.(2007)Algebraic analysis of many valued logics Algebra Univers. 56 133-164
[8]  
Belluce L.P.(1991)Local MV-algebras in the representation of Ric. Mat. XL 291-297
[9]  
Di Nola A.(1994)-algebras Stud. Log. 53 417-432
[10]  
Chang C.C.(1999)Representation and reticulation by quotients of MV-algebras J. Algebra 221 463-474