Interpretable clustering using unsupervised binary trees

被引:0
作者
Ricardo Fraiman
Badih Ghattas
Marcela Svarc
机构
[1] Universidad de San Andrés and Universidad de la República,Département de Mathématiques
[2] Université de la Méditerrannée Faculté des Sciences de Luminy,undefined
[3] Universidad de San Andrés and Conicet,undefined
来源
Advances in Data Analysis and Classification | 2013年 / 7卷
关键词
Unsupervised classification; CART; Pattern recognition; 62H30; 68T10;
D O I
暂无
中图分类号
学科分类号
摘要
We herein introduce a new method of interpretable clustering that uses unsupervised binary trees. It is a three-stage procedure, the first stage of which entails a series of recursive binary splits to reduce the heterogeneity of the data within the new subsamples. During the second stage (pruning), consideration is given to whether adjacent nodes can be aggregated. Finally, during the third stage (joining), similar clusters are joined together, even if they do not share the same parent originally. Consistency results are obtained, and the procedure is used on simulated and real data sets.
引用
收藏
页码:125 / 145
页数:20
相关论文
共 50 条
[21]   IRMAC: Interpretable Refined Motifs in Binary Classification for smart grid applications [J].
Yuan, Rui ;
Pourmousavi, S. Ali ;
Soong, Wen L. ;
Nguyen, Giang ;
Liisberg, Jon A. R. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 117
[22]   Human Epithelial-2 Cell Image Classification Using Deep Unsupervised Learning and Gradient Boosting Trees [J].
Wang, Xu ;
Jiang, Tanqiu ;
Cai, Hengxing .
MEDICAL IMAGING 2021: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2021, 11601
[23]   UNSUPERVISED CLUSTERING OF EVOKED-POTENTIALS BY WAVE-FORM [J].
GEVA, AB ;
PRATT, H .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1994, 32 (05) :543-550
[24]   Unsupervised Clustering Based an Adaptive Particle Swarm Optimization Algorithm [J].
Yamina Mohamed Ben Ali .
Neural Processing Letters, 2016, 44 :221-244
[25]   Efficient clustering approach for adaptive unsupervised colour image segmentation [J].
Khan, Zubair ;
Yang, Jie ;
Zheng, Yuanjie .
IET IMAGE PROCESSING, 2019, 13 (10) :1763-1772
[26]   A procedure for meaningful unsupervised clustering and its application for solvent classification [J].
Pushkarova, Yaroslava ;
Kholin, Yuriy .
CENTRAL EUROPEAN JOURNAL OF CHEMISTRY, 2014, 12 (05) :594-603
[27]   A modified Markov clustering approach to unsupervised classification of protein sequences [J].
Szilagyi, Laszlo ;
Medves, Lehel ;
Szilagyi, Sandor M. .
NEUROCOMPUTING, 2010, 73 (13-15) :2332-2345
[28]   Unsupervised Clustering Based an Adaptive Particle Swarm Optimization Algorithm [J].
Ben Ali, Yamina Mohamed .
NEURAL PROCESSING LETTERS, 2016, 44 (01) :221-244
[29]   Assessment of reclaimed soils by unsupervised clustering of proximal sensor data [J].
Sorenson, P. T. ;
Small, C. ;
Quideau, S. A. ;
Underwood, A. ;
Janz, A. .
CANADIAN JOURNAL OF SOIL SCIENCE, 2018, 98 (04) :688-695
[30]   Unsupervised extra trees: a stochastic approach to compute similarities in heterogeneous data [J].
Dalleau, Kevin ;
Couceiro, Miguel ;
Smail-Tabbone, Malika .
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2020, 9 (04) :447-459