Interpretable clustering using unsupervised binary trees

被引:0
作者
Ricardo Fraiman
Badih Ghattas
Marcela Svarc
机构
[1] Universidad de San Andrés and Universidad de la República,Département de Mathématiques
[2] Université de la Méditerrannée Faculté des Sciences de Luminy,undefined
[3] Universidad de San Andrés and Conicet,undefined
来源
Advances in Data Analysis and Classification | 2013年 / 7卷
关键词
Unsupervised classification; CART; Pattern recognition; 62H30; 68T10;
D O I
暂无
中图分类号
学科分类号
摘要
We herein introduce a new method of interpretable clustering that uses unsupervised binary trees. It is a three-stage procedure, the first stage of which entails a series of recursive binary splits to reduce the heterogeneity of the data within the new subsamples. During the second stage (pruning), consideration is given to whether adjacent nodes can be aggregated. Finally, during the third stage (joining), similar clusters are joined together, even if they do not share the same parent originally. Consistency results are obtained, and the procedure is used on simulated and real data sets.
引用
收藏
页码:125 / 145
页数:20
相关论文
共 50 条
  • [11] SPATIAL-SPECTRAL CLUSTERING USING RECURSIVE SPANNING-TREES
    LAU, KS
    WADE, G
    IEE PROCEEDINGS-I COMMUNICATIONS SPEECH AND VISION, 1991, 138 (04): : 232 - 238
  • [12] Optimization of unsupervised affinity propagation clustering method
    Alameddine, Jihan
    Chehdi, Kacem
    Cariou, Claude
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [13] Approximate spectral clustering for unsupervised agriculture monitoring
    Tasdemir, Kadim
    2015 FOURTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS, 2015,
  • [14] Unsupervised classification of non-linear dynamics in optical fiber propagation using intensity clustering
    Sheveleva, Anastasiia
    Ermolaev, Andrei V.
    Dudley, John M.
    Finot, Christophe
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [15] Labeled Clustering A Unique Method to Label Unsupervised Classes
    Shaheen, Muhammad
    Iqbal, Saeed
    Fazl-e-Basit
    2013 8TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2013, : 210 - 214
  • [16] Unsupervised Wafermap Patterns Clustering via Variational Autoencoders
    Tulala, Peter
    Mahyar, Hamidreza
    Ghalebi, Elahe
    Grosu, Radu
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [17] Unsupervised clustering method for pattern recognition in IIF images
    Vivona, Letizia
    Cascio, Donato
    Bruno, Salvatore
    Fauci, Alessandro
    Taormina, Vincenzo
    Elgaaied, Amel Benammar
    Gorgi, Yousr
    Triki, Raja Marrakchi
    Ben Ahmed, Melika
    Yalaoui, Sadok
    Catanzaro, Maria
    Brusca, Ignazio
    Amato, Gaetano
    Friscia, Giuseppe
    Fauci, Francesco
    Raso, Giuseppe
    2016 SECOND INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS), 2016,
  • [18] Unsupervised Classification of Multivariate Time Series Using VPCA and Fuzzy Clustering With Spatial Weighted Matrix Distance
    He, Hong
    Tan, Yonghong
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (03) : 1096 - 1105
  • [19] IRMAC: Interpretable Refined Motifs in Binary Classification for smart grid applications
    Yuan, Rui
    Pourmousavi, S. Ali
    Soong, Wen L.
    Nguyen, Giang
    Liisberg, Jon A. R.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 117
  • [20] Variable importance in binary regression trees and forests
    Ishwaran, Hemant
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 519 - 537