Interpretable clustering using unsupervised binary trees

被引:0
|
作者
Ricardo Fraiman
Badih Ghattas
Marcela Svarc
机构
[1] Universidad de San Andrés and Universidad de la República,Département de Mathématiques
[2] Université de la Méditerrannée Faculté des Sciences de Luminy,undefined
[3] Universidad de San Andrés and Conicet,undefined
来源
Advances in Data Analysis and Classification | 2013年 / 7卷
关键词
Unsupervised classification; CART; Pattern recognition; 62H30; 68T10;
D O I
暂无
中图分类号
学科分类号
摘要
We herein introduce a new method of interpretable clustering that uses unsupervised binary trees. It is a three-stage procedure, the first stage of which entails a series of recursive binary splits to reduce the heterogeneity of the data within the new subsamples. During the second stage (pruning), consideration is given to whether adjacent nodes can be aggregated. Finally, during the third stage (joining), similar clusters are joined together, even if they do not share the same parent originally. Consistency results are obtained, and the procedure is used on simulated and real data sets.
引用
收藏
页码:125 / 145
页数:20
相关论文
共 50 条
  • [1] Interpretable clustering using unsupervised binary trees
    Fraiman, Ricardo
    Ghattas, Badih
    Svarc, Marcela
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2013, 7 (02) : 125 - 145
  • [2] Interpretable fuzzy clustering using unsupervised fuzzy decision trees
    Jiao, Lianmeng
    Yang, Haoyu
    Liu, Zhun-ga
    Pan, Quan
    INFORMATION SCIENCES, 2022, 611 : 540 - 563
  • [3] Clustering multivariate functional data using unsupervised binary trees
    Golovkine, Steven
    Klutchnikoff, Nicolas
    Patilea, Valentin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 168
  • [4] Using Decision Trees for Interpretable Supervised Clustering
    Kokash N.
    Makhnist L.
    SN Computer Science, 5 (2)
  • [5] Optimal Interpretable Clustering Using Oblique Decision Trees
    Gabidolla, Magzhan
    Carreira-Perpinan, Miguel A.
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 400 - 410
  • [6] Clustering nominal data using unsupervised binary decision trees: Comparisons with the state of the art methods
    Ghattas, Badih
    Michel, Pierre
    Boyer, Laurent
    PATTERN RECOGNITION, 2017, 67 : 177 - 185
  • [7] Interpretable Clustering via Soft Clustering Trees
    Cohen, Eldan
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2023, 2023, 13884 : 281 - 298
  • [8] INTERPRETABLE CLUSTERING ENSEMBLES USING BINARY MATRIX FACTORIZATION
    Sukhanov, S.
    Debes, C.
    Zoubir, A. M.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4229 - 4233
  • [9] Mining patterns for clustering using unsupervised decision trees
    Gutierrez-Rodriguez, A. E.
    Martinez-Trinidad, J. Fco.
    Garcia-Borroto, M.
    Carrasco-Ochoa, J. A.
    INTELLIGENT DATA ANALYSIS, 2015, 19 (06) : 1297 - 1310
  • [10] Clustering based on unsupervised binary trees to define levels of symptom severity in cancer
    Michel, Pierre
    Hamidou, Zeinab
    Boyer, Laurent
    Ghattas, Badih
    Auquier, Pascal
    QUALITY OF LIFE RESEARCH, 2015, 24 : 91 - 92