D-brane charges in gravitational duals of 2 + 1 dimensional gauge theories and duality cascades

被引:0
作者
Ofer Aharony
Akikazu Hashimoto
Shinji Hirano
Peter Ouyang
机构
[1] The Weizmann Institute of Science,Department of Particle Physics
[2] University of Wisconsin,Department of Physics
[3] The Niels Bohr Institute,undefined
来源
Journal of High Energy Physics | / 2010卷
关键词
Gauge-gravity correspondence; Chern-Simons Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We perform a systematic analysis of the D-brane charges associated with string theory realizations of d = 3 gauge theories, focusing on the examples of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} supersymmetric U(N) × U(N + M) Yang-Mills theory and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 3 $\end{document} supersymmetric U(N) × U(N + M) Yang-Mills-Chern-Simons theory. We use both the brane construction of these theories and their dual string theory backgrounds in the supergravity approximation. In the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} case we generalize the previously known gravitational duals to arbitrary values of the gauge couplings, and present a precise mapping between the gravity and field theory parameters. In the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 3 $\end{document} case, which (for some values of N and M) flows to an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 6 $\end{document} supersymmetric Chern-Simons-matter theory in the IR, we argue that the careful analysis of the charges leads to a shift in the value of the B2 field in the IR solution by 1/2, in units where its periodicity is one, compared to previous claims. We also suggest that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 3 $\end{document} theories may exhibit, for some values of N and M, duality cascades similar to those of the Klebanov-Strassler theory.
引用
收藏
相关论文
共 117 条
[1]  
Bagger J(2008)Gauge symmetry and supersymmetry of multiple M2-branes Phys. Rev. D 77 065008-undefined
[2]  
Lambert N(2009)Algebraic structures on parallel M2-branes Nucl. Phys. B 811 66-undefined
[3]  
Gustavsson A(2004)Superconformal Chern-Simons theories JHEP 11 078-undefined
[4]  
Schwarz JH(2008)Comments on the Bagger-Lambert theory and multiple M2- branes JHEP 05 105-undefined
[5]  
Van Raamsdonk M(2008) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals JHEP 10 091-undefined
[6]  
Aharony O(2008)Fractional M2-branes JHEP 11 043-undefined
[7]  
Bergman O(1998)Superconformal field theory on threebranes at a Calabi-Yau singularity Nucl. Phys. B 536 199-undefined
[8]  
Jafferis DL(1999)Non-spherical horizons. I Adv. Theor. Math. Phys. 3 1-undefined
[9]  
Maldacena J(1999)On the hierarchy between non-commutative and ordinary supersymmetric Yang-Mills JHEP 12 007-undefined
[10]  
Aharony O(2009)Anomalous radius shift in AdS JHEP 07 016-undefined