K-theory and G-theory of derived algebraic stacks

被引:0
作者
Adeel A. Khan
机构
[1] Academia Sinica,Institute of Mathematics
来源
Japanese Journal of Mathematics | 2022年 / 17卷
关键词
algebraic K-theory; virtual fundamental classes; derived algebraic geometry; stacks; 19E08; 14A30; 14A20;
D O I
暂无
中图分类号
学科分类号
摘要
These are some notes on the basic properties of algebraic K-theory and G-theory of derived algebraic spaces and stacks, and the theory of fundamental classes in this setting.
引用
收藏
页码:1 / 61
页数:60
相关论文
共 96 条
[1]  
Abramovich D(2008)Tame stacks in positive characteristic Ann. Inst. Fourier (Grenoble) 58 1057-1091
[2]  
Olsson M(2020)A Luna étale slice theorem for algebraic stacks Ann. of Math. (2) 191 675-738
[3]  
Vistoli A(2021)Bivariant derived algebraic cobordism J. Algebraic Geom. 30 205-252
[4]  
Alper J(2019)-theoretic obstructions to bounded t-structures Invent. Math. 216 241-300
[5]  
Hall J(2015)On exact ∞-categories and the theorem of the heart Compos. Math. 151 2160-2186
[6]  
Rydh D(2016)On the algebraic K-theory of higher categories J. Topol. 9 245-347
[7]  
Annala T(1975)Riemann-Roch for singular varieties Inst. Hautes Études Sci. Publ. Math. 45 101-145
[8]  
Antieau B(1997)The intrinsic normal cone Invent. Math. 128 45-88
[9]  
Gepner D(2010)Integral transforms and Drinfeld centers in derived algebraic geometry J. Amer. Math. Soc. 23 909-966
[10]  
Heller J(2017)Projectivity of the Witt vector affine Grassmannian Invent. Math. 209 329-423