The relationship between optical properties and soluble solid contents of Gong pear for non-destructive internal quality inspection

被引:0
作者
Yande Liu
Yuxu Huo
Jun Liao
Yang Lu
Shimin Yang
机构
[1] East China Jiaotong University,School of Mechatronics and Vehicle Engineering
[2] East China Jiaotong University,Institute of Intelligent Mechanical and Electrical Equipment
来源
Journal of Food Measurement and Characterization | 2024年 / 18卷
关键词
Scattering coefficient; Absorption coefficient; Soluble solids content; Different regions of Gong pear;
D O I
暂无
中图分类号
学科分类号
摘要
To investigate the relationship between optical properties and soluble solids content (SSC) in different regions of Gong pear. The optical properties of the upper, middle and lower parts of Gong pear were measured by the single integrating sphere system in the range of 500–1100 nm. The differences of absorption coefficient (μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document}) spectra and reduced scattering coefficient (μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document}) spectra in three regions of Gong pear were analyzed. The differences of μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document} and μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document} at 670,710, 750, 800 and 980 nm were analyzed. Gong Pear SSC was positively correlated with μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document} and μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document} in the range of 500–1050 nm.The local model of Gong pear SSC was established based on the μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document} spectra and μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document} spectra in the upper, middle and lower regions respectively. And the partial least square regression (PLSR) model and support vector regression (SVR) model were established based on the mean μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document} spectra, mean μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document} spectra and mean μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document}+μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document} spectra after standard normal variables (SNV) pretreatment. The results showed that the optical properties of the upper, middle and lower sections of Gong pear were less different. Among all established SSC prediction models, the model based on the mean μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document} spectra had the best prediction effect. Its correction coefficient of determination (Rc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}_{c}^{2}$$\end{document}) and prediction coefficient of determination (RP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}_{P}^{2}$$\end{document}) were 0.894 and 0.837, and its correction root mean square error (RMSEC) and prediction root mean square error (RMSEP) were 0.305 and 0.429, respectively. The results showed that soluble solids content mainly affected the absorption characteristics of Gong pear, and the internal quality of Gong pear could be predicted better based on the absorption coefficient.
引用
收藏
页码:2916 / 2925
页数:9
相关论文
共 100 条
[1]  
Yousefi SR(2021)Synthesis, characterization and application of Co/Co J. Mol. Liq. 337 116405-9
[2]  
Alshamsi HA(2019)O J. Food Eng. 257 1-54
[3]  
Amiri O(2021) nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties Foods 10 1315-946
[4]  
Guo W(2022)A novel noninvasive and cost-effective handheld detector on soluble solids content of fruits Front. Plant Sci. 13 938162-186
[5]  
Li W(2020)Nondestructive analysis of internal quality in pears with a self-made near-infrared spectra detector combined with multivariate data processing Postharvest Biol. Technol. 159 45-54
[6]  
Yang B(2020)Determination of the soluble solids content in Korla fragrant pears based on visible and near-infrared spectroscopy combined with model analysis and variable selection Postharvest Biol. Technol. 159 936-70
[7]  
Wu X(2019)Microstructure affects light scattering in apples Biosyst. Eng. 184 180-1712
[8]  
Li G(2019)Relationship between optical properties and soluble sugar contents of apple flesh during storage Food Anal. Methods 12 111181-365
[9]  
He F(2018)Relationship of the bulk optical properties in 950–1650 nm wavelength range with internal quality and microstructure of kiwifruit during maturation Lwt Food Sci. Technol. 97 45-117
[10]  
Yang X(2020)Near-infrared hyperspectral imaging rapidly detects the decay of postharvest strawberry based on water-soluble sugar analysis Postharvest Biol. Technol. 165 62-664