Variable Exponent Sobolev Spaces for Semilinear Elliptic Systems

被引:0
|
作者
Zhong Tan
Fei Fang
机构
[1] Xiamen University,School of Mathematical Sciences
来源
关键词
35J20; 35J55; Semilinear elliptic system; variable exponent Sobolev space; linking theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the semilinear elliptic systems with Dirichlet boundary value are considered. We extend the notion of subcritical growth from polynomial growth to variable exponent growth. Under the variable exponent growth, nontrivial solutions are obtained via variable exponent Sobolev spaces and variational methods. In article final, we make a remark to explain that our main result is a extention of a recent result of D. G. de Figueiredo, J. M. do Óand B. Ruf [D. G. de Figueiredo, J. M. do Ó, B. Ruf, An Orlicz-space approach to superlinear elliptic systems, J. Funct. Anal. 224 (2005) 471–496].
引用
收藏
页码:1353 / 1367
页数:14
相关论文
共 50 条