On the Topological Conjugacy of Brouwer Flows

被引:0
作者
Zbigniew Leśniak
机构
[1] Pedagogical University,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2019年 / 42卷
关键词
Brouwer homeomorphism; Brouwer flow; First prolongational limit set; Topological equivalence; Topological conjugacy; Primary 39B12; Secondary 54H20; 37E30;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of topological conjugacy of Brouwer flows. We give a sufficient and necessary condition for Brouwer flows to be topologically conjugate. To obtain this result we use a cover of the plane by maximal parallelizable regions and relations between parallelizing homeomorphisms of these regions. We show that for topologically equivalent Brouwer flows there exists a one-to-one correspondence between such covers of the plane.
引用
收藏
页码:1639 / 1655
页数:16
相关论文
共 14 条
  • [1] Andrea SA(1967)On homeomorphisms of the plane which have no fixed points Abh. Math. Sem. Hamburg 30 61-74
  • [2] Béguin F(2003)Ensemble oscillant d’un homéomorphisme de Brouwer, homéomorphismes de Reeb Bull. Soc. Math. France 131 149-210
  • [3] Le Roux F(1912)Beweis des ebenen Translationssatzes Math. Ann. 72 37-54
  • [4] Brouwer LEJ(1953)On the structure of the plane translation of Brouwer Osaka Math. J. 5 233-266
  • [5] Homma T(1940)Regular curve-families filling the plane I Duke Math. J. 7 154-185
  • [6] Terasaka H(2009)On a decomposition of the plane for a flow free mappings Publ. Math. Debrecen 75 191-202
  • [7] Kaplan W(2008)On the first prolongational limit set of flows of free mappings Tamkang J. Math. 39 263-269
  • [8] Leśniak Z(2016)On the topological equivalence of flows of Brouwer homeomorphisms J. Differ. Equ. Appl. 22 853-864
  • [9] Leśniak Z(1999)Classes de conjugaison des flots du plan topologiquement équivalents au flot de Reeb C. R. Acad. Sci. Paris 328 45-50
  • [10] Leśniak Z(2013)A characterization of the standard Reeb flow Hokkaido Math. J. 42 69-80