Equiangular Lines in Low Dimensional Euclidean Spaces

被引:0
|
作者
Gary R. W. Greaves
Jeven Syatriadi
Pavlo Yatsyna
机构
[1] Nanyang Technological University,Division of Mathematical Sciences, School of Physical and Mathematical Sciences
[2] Charles University,Department of Algebra, Faculty of Mathematics and Physics
来源
Combinatorica | 2021年 / 41卷
关键词
05B40; 05B20;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the maximum cardinality of an equiangular line system in 14 and 16 dimensions is 28 and 40, respectively, thereby solving a longstanding open problem. We also improve the upper bounds on the cardinality of equiangular line systems in 19 and 20 dimensions to 74 and 94, respectively.
引用
收藏
页码:839 / 872
页数:33
相关论文
共 50 条
  • [1] Equiangular Lines in Low Dimensional Euclidean Spaces
    Greaves, Gary R. W.
    Syatriadi, Jeven
    Yatsyna, Pavlo
    COMBINATORICA, 2021, 41 (06) : 839 - 872
  • [2] Equiangular lines in Euclidean spaces
    Greaves, Gary
    Koolen, Jacobus H.
    Munemasa, Akihiro
    Szoellosi, Ferenc
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 138 : 208 - 235
  • [3] EQUIANGULAR LINES IN EUCLIDEAN SPACES: DIMENSIONS 17 AND 18
    Greaves, Gary R. W.
    Syatriadi, Jeven
    Yatsyna, Pavlo
    MATHEMATICS OF COMPUTATION, 2023, 92 (342) : 1867 - 1903
  • [4] Equiangular Subspaces in Euclidean Spaces
    Balla, Igor
    Sudakov, Benny
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 61 (01) : 81 - 90
  • [5] Equiangular Subspaces in Euclidean Spaces
    Igor Balla
    Benny Sudakov
    Discrete & Computational Geometry, 2019, 61 : 81 - 90
  • [6] Angular structure of equiangular cones in Euclidean spaces
    Gourion, Daniel
    Seeger, Alberto
    AEQUATIONES MATHEMATICAE, 2024, 98 (05) : 1225 - 1234
  • [7] Equiangular lines and spherical codes in Euclidean space
    Igor Balla
    Felix Dräxler
    Peter Keevash
    Benny Sudakov
    Inventiones mathematicae, 2018, 211 : 179 - 212
  • [8] Equiangular lines and spherical codes in Euclidean space
    Balla, Igor
    Draxler, Felix
    Keevash, Peter
    Sudakov, Benny
    INVENTIONES MATHEMATICAE, 2018, 211 (01) : 179 - 212
  • [9] Lines on Planes in n-Dimensional Euclidean Spaces
    Kubo, Akihiro
    FORMALIZED MATHEMATICS, 2005, 13 (03): : 389 - 397
  • [10] Embedding Tree Metrics into Low-Dimensional Euclidean Spaces
    A. Gupta
    Discrete & Computational Geometry, 2000, 24 : 105 - 116