Spectral approach to quantum searching on Markov chains—the complete bipartite graph

被引:0
作者
Narknyul Choi
Min-Ho Lee
机构
[1] Kumoh National Institute of Technology,School of Liberal Arts and Teacher Training
来源
Journal of the Korean Physical Society | 2023年 / 83卷
关键词
Quantum search; Quantum walk; Absorbing Markov chain; Complete bipartite graph;
D O I
暂无
中图分类号
学科分类号
摘要
Since Grover devised a quantum algorithm for unstructured search, generalization of the algorithm to structured data sets represented by graphs has been an important research topic. The introduction of absorbing marked vertices provided a breakthrough for this problem, and recently it was proved that a quantum walk search algorithm replacing the marked vertices by partially absorbing vertices can find a marked vertex in any reversible Markov chain with any number of marked vertices. However, in contrast, the proof based on the quantum fast-forwarding technique gives little intuition about the underlying mechanism, while the spectral analysis of Grover’s algorithm leads to understanding of the searching mechanism as a rotation in a two-dimensional space. For a spectral approach to the quantum search on Markov chains, we consider as a nontrivial example the complete bipartite graph consisting of two sets X1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_1$$\end{document} and X2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_2$$\end{document} and the marked vertices being only in X2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_2$$\end{document}. By analytically determining the spectral information of the quantum walk, we demonstrate that the quantum algorithm shows quadratic speed-up compared to the corresponding classical search method. And we find that the quantum search is described in terms of a two-state model for that case.
引用
收藏
页码:829 / 841
页数:12
相关论文
共 40 条
[1]  
Grover LK(1997)Quantum mechanics helps in searching for a needle in a haystack Phys. Rev. Lett. 79 325-undefined
[2]  
Shenvi N(2003)Quantum random-walk search algorithm Phys. Rev. A 67 881-undefined
[3]  
Kempe J(2004)Spatial search by quantum walk Phys. Rev. A 70 851-undefined
[4]  
Whaley KB(2009)Wave communication across regular lattices Phys. Rev. Lett. 103 181-undefined
[5]  
Childs AM(2010)Quantum search algorithms on a regular lattice Phys. Rev. A 82 527-undefined
[6]  
Goldstone J(2008)Faster quantum-walk algorithm for the two-dimensional spatial search Phys. Rev. A 78 undefined-undefined
[7]  
Hein B(2010)quantum hitting time on the complete graph Int. J. Quantum Inf. 08 undefined-undefined
[8]  
Tanner G(2015)Connectivity is a poor indicator of fast quantum search Phys. Rev. Lett. 114 undefined-undefined
[9]  
Hein B(2015)Quantum search with multiple walk steps per oracle query Phys. Rev. A 92 undefined-undefined
[10]  
Tanner G(2018)Quantum walk search on kronecker graphs Phys. Rev. A 98 undefined-undefined