Künstliche Intelligenz in der NephrologieTechnische Möglichkeiten und klinischer Nutzen von AKI- und CKD-VorhersagemodellenArtificial intelligence in nephrologyTechnical capabilities and clinical utility of AKI and CKD predictive models

被引:0
作者
Kristina Boss
Roland Roller
Alexander Woywodt
Andreas Kribben
Klemens Budde
Stefan Becker
机构
[1] Universität Duisburg-Essen,Klinik für Nephrologie, Universitätsklinikum Essen
[2] Deutsches Forschungszentrum für Künstliche Intelligenz,Klinik für Nephrologie
[3] Lancashire Teaching Hospitals NHS Foundation Trust,undefined
[4] Charité Universitätsmedizin Berlin,undefined
[5] MVZ DaVita Duisburg,undefined
关键词
D O I
10.1007/s11560-022-00609-3
中图分类号
学科分类号
摘要
引用
收藏
页码:399 / 404
页数:5
相关论文
共 125 条
[1]  
Boss K(2019)Vom akuten Nierenversagen in die chronische Niereninsuffizienz Nephrologe 14 248-252
[2]  
Kribben A(2022)Behandlung und Progressionsbeeinflussung des akuten Nierenversagens Dtsch Med Wochenschr 147 246-8
[3]  
Boss K(2017)Electronic alerts for acute kidney injury Dtsch Arztebl Int 114 1-296
[4]  
Kribben A(2021)Effect of clinical decision support systems on clinical outcome for acute kidney injury: a systematic review and meta-analysis BMC Nephrol 22 271-473
[5]  
Haase M(2020)The effects of intensive versus routine treatment in patients with acute kidney injury Dtsch Arztebl Int 117 289-72
[6]  
Kribben A(2021)Electronic health record alerts for acute kidney injury: multicenter, randomized clinical trial BMJ 372 m4786-31
[7]  
Zidek W(2019)Implementation of a digitally enabled care pathway (part 1): impact on clinical outcomes and associated health care costs J Med Internet Res 21 e13147-101
[8]  
Floege J(2020)The impact of clinical decision support systems (CDSS) on physicians: a scoping review Stud Health Technol Inform 272 470-119
[9]  
Albert C(2021)The clinical decision support system AMPEL for laboratory diagnostics: implementation and technical evaluation JMIR Med Inform 9 e20407-1886
[10]  
Isermann B(2021)COVID-19 prognostic models: a pro-con debate for machine learning vs. traditional statistics Front Digit Health 3 637944-572