Torus actions on rationally elliptic manifolds

被引:0
作者
F. Galaz-García
M. Kerin
M. Radeschi
机构
[1] Durham University,Department of Mathematical Sciences
[2] NUI Galway,School of Mathematics, Statistics and Applied Mathematics
[3] University of Notre Dame,Department of Mathematics
来源
Mathematische Zeitschrift | 2021年 / 297卷
关键词
Equivariant; Rationally elliptic; Toral rank; Torus action; 55P62; 57R91; 57S15;
D O I
暂无
中图分类号
学科分类号
摘要
An upper bound is obtained on the rank of a torus which can act smoothly and effectively on a smooth, closed (simply connected) rationally elliptic manifold. In the maximal-rank case, the manifolds admitting such actions are classified up to equivariant rational homotopy equivalence.
引用
收藏
页码:197 / 221
页数:24
相关论文
共 33 条
  • [1] Allday C(1972)On the rank of a space Trans. Am. Math. Soc. 166 173-185
  • [2] Barden D(1965)Simply connected five-manifolds Ann. Math. 82 365-385
  • [3] DeVito J(2014)The classification of compact simply connected biquotients in dimensions 4 and 5 Differ. Geom. Appl. 34 128-138
  • [4] DeVito J(2017)The classification of compact simply connected biquotients in dimension 6 and 7 Math. Ann. 368 1493-1541
  • [5] Eschenburg J-H(1992)Cohomology of biquotients Manuscr. Math. 75 151-166
  • [6] Escher C(2005)A diffeomorphism classification of generalized Witten manifolds Geom. Dedic. 115 79-120
  • [7] Fintushel R(1978)Classification of circle actions on 4-manifolds Trans. Am. Math. Soc. 242 377-390
  • [8] Florit L(2009)On the topology of positively curved Bazaikin spaces J. Eur. Math. Soc. 11 189-205
  • [9] Ziller W(2014)Cohomogeneity-two torus actions on nonnegatively curved manifolds of low dimension Math. Z. 276 133-152
  • [10] Galaz-García F(2011)Low-dimensional manifolds with non-negative curvature and maximal symmetry rank Proc. Am. Math. Soc. 139 2559-2564