Approximation of integrable functions based on ϕ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi -$$\end{document}transform

被引:0
作者
S. Jahedi
M. J. Mehdipour
R. Rafizadeh
机构
[1] Shiraz University of Technology,Department of Mathematics
关键词
Fuzzy transform; Basic function; Continuous function; Integrable function; Approximation;
D O I
10.1007/s00500-013-1182-8
中图分类号
学科分类号
摘要
Let E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} be a bounded subset of real line which contains its infimum and supremum. In this paper, we have defined the ϕ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi -$$\end{document}transform and its inverse, where ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is a function from E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} into (0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,1]$$\end{document}. We will have shown that real-valued integrable functions on [a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[a, b]$$\end{document} and real-valued continuous functions on E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} can be approximated by this transformation with an arbitrary precision.
引用
收藏
页码:2015 / 2022
页数:7
相关论文
共 35 条
[1]  
Bede B(2011)Approximation properties of fuzzy transforms Fuzzy sets Syst 180 20-40
[2]  
Rudas IJ(2007)Compression and decompression of images with discrete fuzzy transforms Inf Sci 177 2349-2362
[3]  
Di Martino F(2008)An image coding/decoding method based on direct and inverse fuzzy transforms Int J Approx Reason 48 110-131
[4]  
Sessa S(2010)Fuzzy transforms for compression and decompression of color videos Inf Sci 180 3914-3931
[5]  
Di Martino F(2010)A segmentation method for images compressed by fuzzy transforms Fuzzy Sets Syst 161 56-74
[6]  
Loia V(2010)Fuzzy transforms method and attribute dependency in data analysis Inf Sci 180 493-505
[7]  
Perfilieva I(2011)Fuzzy transforms method in prediction data analysis Fuzzy Sets Syst 180 146-163
[8]  
Sessa S(2012)Fragile watermarking tamper detection with images compressed by fuzzy transform Inf Sci 195 62-90
[9]  
Di Martino F(2011)Fuzzy transform and least-squares approximation: analogies, differences, and generalizations Fuzzy sets Syst 180 41-54
[10]  
Loia V(2006)Fuzzy transforms: theory and applications Fuzzy Sets Syst 157 993-1023