Relationship Between MP and DPP for the Stochastic Optimal Control Problem of Jump Diffusions

被引:0
作者
Jing-Tao Shi
Zhen Wu
机构
[1] Shandong University,School of Mathematics
来源
Applied Mathematics & Optimization | 2011年 / 63卷
关键词
Jump diffusions; Stochastic optimal control; Maximum principle; Dynamic programming principle; Verification theorem; Viscosity solution;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the stochastic optimal control problem of jump diffusions. The relationship between stochastic maximum principle and dynamic programming principle is discussed. Without involving any derivatives of the value function, relations among the adjoint processes, the generalized Hamiltonian and the value function are investigated by employing the notions of semijets evoked in defining the viscosity solutions. Stochastic verification theorem is also given to verify whether a given admissible control is optimal.
引用
收藏
页码:151 / 189
页数:38
相关论文
共 36 条
[1]  
Alvarez D.(1996)Viscosity solutions of nonlinear integral-differential equations Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 293-317
[2]  
Tourin A.(2006)A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23 695-711
[3]  
Arisawa M.(2007)A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations Ann. Inst. Henri Poincaré, Anal. Non Linéaire 24 167-169
[4]  
Arisawa M.(2008)Second-order elliptic integral-differential equations: Viscosity solutions’ theory revisited Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25 567-585
[5]  
Barles G.(1997)Backward stochastic differential equations and integral-partial differential equations Stoch. Stoch. Rep. 60 57-83
[6]  
Imbert C.(1978)An introductory approach to duality in optimal stochastic control SIAM J. Control Optim. 20 62-78
[7]  
Barles G.(2010)Viscosity solutions for a system of integro-PDEs and connections to optimal switching and control of jump-diffusion processes Appl. Math. Optim. 62 47-80
[8]  
Buckdahn R.(2004)A sufficient stochastic maximum principle for optimal control of jump diffusions and applications to finance J. Optim. Theory Appl. 121 77-98
[9]  
Pardoux E.(2005)A sufficient stochastic maximum principle for optimal control of jump diffusions and applications to finance J. Optim. Theory Appl. 124 511-512
[10]  
Bismut J.M.(2005)A corrected proof of the stochastic verification theorem within the framework of viscosity solutions SIAM J. Control Optim. 43 2009-2019