On the stability of the positive mass theorem for asymptotically hyperbolic graphs

被引:0
作者
Armando J. Cabrera Pacheco
机构
[1] Universität Tübingen,Department of Mathematics
来源
Annals of Global Analysis and Geometry | 2019年 / 56卷
关键词
Asymptotically hyperbolic graphs; Stability of hyperbolic positive mass theorem; Asymptotically hyperbolic manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
The positive mass theorem states that the total mass of a complete asymptotically flat manifold with nonnegative scalar curvature is nonnegative; moreover, the total mass equals zero if and only if the manifold is isometric to the Euclidean space. Huang and Lee (Commun Math Phys 337(1):151–169, 2015) proved the stability of the positive mass theorem for a class of n-dimensional (n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 3$$\end{document}) asymptotically flat graphs with nonnegative scalar curvature, in the sense of currents. Motivated by their work and using results of Dahl et al. (Ann Henri Poincaré 14(5):1135–1168, 2013), we adapt their ideas to obtain a similar result regarding the stability of the positive mass theorem, in the sense of currents, for a class of n-dimensional (n≥3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n \ge 3)$$\end{document} asymptotically hyperbolic graphs with scalar curvature bigger than or equal to -n(n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,n(n-1)$$\end{document}.
引用
收藏
页码:443 / 463
页数:20
相关论文
共 51 条
[1]  
Allen B(2017)IMCF and the stability of the PMT and RPI under Ann. Henri Poincaré 19 1-24
[2]  
Allen B(2018) convergence J. Math. Phys. 59 082501, 18-33
[3]  
Andersson L(2008)Stability of the PMT and RPI for asymptotically hyperbolic manifolds foliated by IMCF Ann. Henri Poincaré 9 1-1006
[4]  
Cai M(1961)Rigidity and positivity of mass for asymptotically hyperbolic manifolds Phys. Rev. (2) 122 997-693
[5]  
Galloway GJ(1986)Coordinate invariance and energy expressions in general relativity Comm. Pure Appl. Math. 39 661-306
[6]  
Arnowitt R(2002)The mass of an asymptotically flat manifold Comm. Anal. Geom. 10 291-264
[7]  
Deser S(2018)Curvature estimates and the positive mass theorem Classical Quantum Gravity 35 115015, 38-3678
[8]  
Misner CW(2003)On the mass aspect function and positive energy theorems for asymptotically hyperbolic manifolds Pacific J. Math. 212 231-1168
[9]  
Bartnik R(2005)The mass of asymptotically hyperbolic Riemannian manifolds Proc. Amer. Math. Soc. 133 3669-801
[10]  
Bray H(2013)A note on asymptotically flat metrics on Ann. Henri Poincaré 14 1135-1002