Localized chaotic patterns in weakly dissipative systems

被引:0
作者
D. Urzagasti
D. Laroze
H. Pleiner
机构
[1] Instituto de Alta Investigación,
[2] Universidad de Tarapacá,undefined
[3] Max-Planck-Institute for Polymer Research,undefined
来源
The European Physical Journal Special Topics | 2014年 / 223卷
关键词
Soliton; Lyapunov Exponent; European Physical Journal Special Topic; Bifurcation Diagram; Localize Pattern;
D O I
暂无
中图分类号
学科分类号
摘要
A generalized parametrically driven damped nonlinear Schrödinger equation is used to describe, close to the resonance, the dynamics of weakly dissipative systems, like a harmonically coupled pendula chain or an easy-plane magnetic wire. The combined effects of parametric forcing, spatial coupling, and dissipation allows for the existence of stable non-trivial uniform states as well as homogeneous pattern states. The latter can be regular or chaotic. A new family of localized states that connect asymptotically a non-trivial uniform state with a spatio-temporal chaotic pattern is numerically found. We discuss the parameter range, where these localized structures exist. This article is dedicated to Prof. Helmut R. Brand on the occasion of his 60th birthday.
引用
收藏
页码:141 / 154
页数:13
相关论文
共 163 条
[1]  
Kartashov Y.V.(2011)undefined Rev. Mod. Phys. 83 247-undefined
[2]  
Malomed B.A.(2008)undefined Nonlinearity 21 T45-undefined
[3]  
Torner L.(2002)undefined Int. J. Bif. Chaos 12 245-undefined
[4]  
Knobloch E.(1990)undefined Phys. Rev. Lett. 64 749-undefined
[5]  
Coullet P.(1993)undefined Rev. Mod. Phys. 65 851-undefined
[6]  
van Saarloos W.(1990)undefined Phys. Rev. A 42 6009-undefined
[7]  
Hohenberg P.C.(2013)undefined Phys. Rev. Lett. 110 104101-undefined
[8]  
Cross M.C.(1999)undefined Physica D 129 147-undefined
[9]  
Hohenberg P.C.(2000)undefined Phys. Rev. Lett. 84 3069-undefined
[10]  
Malomed B.A.(1989)undefined Phys. Rev. Lett. 63 2801-undefined