On the Asymptotic Behavior of the Remainder of a Dirichlet Series Absolutely Convergent in a Half-Plane

被引:4
作者
L. Ya. Mykytyuk
M. M. Sheremeta
机构
关键词
Asymptotic Behavior; Dirichlet Series; Absolute Convergence; Nonnegative Exponent;
D O I
10.1023/A:1025877328155
中图分类号
学科分类号
摘要
For a Dirichlet series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\nolimits_{n = 1}^\infty {a_n \exp \{ s{\lambda}_n \} } $$ \end{document} with nonnegative exponents and zero abscissa of absolute convergence, we study the asymptotic behavior of the remainder \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\nolimits_{k = n}^\infty {\left| {a_k } \right|\exp \{ {\delta \lambda}_k \} } $$ \end{document}, δ < 0, as n → ∞.
引用
收藏
页码:456 / 467
页数:11
相关论文
共 5 条
[1]  
Mykytyuk L. Y.(1999)On the approximation of Dirichlet series by exponential polynomials Visn. L'viv. Univ., Ser. Mekh.-Mat. 53 35-39
[2]  
Sheremeta M. M.(2000)A remark on the approximation of Dirichlet series by exponential polynomials Visn. L'viv. Univ., Ser, Mekh.-Mat. 57 25-28
[3]  
Mykytyuk L. Y.(1974)On the abscissas of convergence of a Dirichlet series and its Newton majorant Ukr. Mat. Zh. 26 161-168
[4]  
Geche F. I.(undefined)undefined undefined undefined undefined-undefined
[5]  
Onipchuk S. V.(undefined)undefined undefined undefined undefined-undefined