Limit Theorems for the One-Dimensional Random Walk with Random Resetting to the Maximum

被引:0
作者
Van Hao Can
Thai Son Doan
Van Quyet Nguyen
机构
[1] National University of Singapore,Department of Statistics and Applied Probability
[2] Vietnam Academy of Science and Technology,Institute of Mathematics
来源
Journal of Statistical Physics | 2021年 / 183卷
关键词
Limit theorems; Random walk; Stochastic resetting; Primary 60G50; Secondary 60J10;
D O I
暂无
中图分类号
学科分类号
摘要
The first part of this paper is devoted to study a model of one-dimensional random walk with memory to the maximum position described as follows. At each step the walker resets to the rightmost visited site with probability r∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \in (0,1)$$\end{document} and moves as the simple random walk with remaining probability. Using the approach of renewal theory, we prove the laws of large numbers and the central limit theorems for the random walk. These results reprove and significantly enhance the analysis of the mean value and variance of the process established in Majumdar et al. (Phys Rev E 92:052126, 2015). In the second part, we expand the analysis to the situation where the memory of the walker decreases over time by assuming that at the step n the resetting probability is rn=min{rn-a,12}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_n = \min \{rn^{-a}, \tfrac{1}{2}\}$$\end{document} with r, a positive parameters. For this model, we first establish the asymptotic behavior of the mean values of Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}-the current position and Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n$$\end{document}-the maximum position of the random walk. As a consequence, we observe an interesting phase transition of the ratio E[Xn]/E[Mn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {E}}}[X_n]/{{\mathbb {E}}}[M_n]$$\end{document} when a varies. Precisely, it converges to 1 in the subcritical phase a∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in (0,1)$$\end{document}, to a constant c∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in (0,1)$$\end{document} in the critical phase a=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=1$$\end{document}, and to 0 in the supercritical phase a>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>1$$\end{document}. Finally, when a>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>1$$\end{document}, we show that the model behaves closely to the simple random walk in the sense that Xnn⟶(d)N(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{X_n}{\sqrt{n}} \overset{(d)}{\longrightarrow } {\mathcal {N}}(0,1)$$\end{document} and Mnn⟶(d)max0≤t≤1Bt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{M_n}{\sqrt{n}} \overset{(d)}{\longrightarrow } \max _{0 \le t \le 1} B_t$$\end{document}, where N(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}(0,1)$$\end{document} is the standard normal distribution and (Bt)t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(B_t)_{t\ge 0}$$\end{document} is the standard Brownian motion.
引用
收藏
相关论文
共 46 条
[1]  
Bartumeus F(2009)Optimal search behaviour and classic foraging theory J. Phys. A: Math. Theor. 42 434002-3087
[2]  
Catalan J(2005)Animal search strategies: a quantitative random-walk analysis Ecology 86 3078-180
[3]  
Bartumeus F(2011)Intermittent search strategies Rev. Mod. Phys. 83 81-undefined
[4]  
da Luz MGE(2014)Random walks with preferential relocation to places visited in the past and their application to biology Phys. Rev. Lett. 112 240601-undefined
[5]  
Viswanathan GM(2011)Diffusion with stochastic resetting Phys. Rev. Lett. 106 160601-undefined
[6]  
Catalan J(2020)Stochastic resetting and applications J. Phys. A: Math. Theor 53 193001-undefined
[7]  
Bénichou O(2005)Intrinsic scaling complexity in animal dispersion and abundance Am. Nat. 165 44-undefined
[8]  
Loverdo C(2019)Comparison of two models of tethered motion J. Phys. A: Math. Theor 52 075001-undefined
[9]  
Moreau M(2014)First order transition for the optimal search time of Lévy flights with resetting Phys. Rev. Lett. 113 220602-undefined
[10]  
Voituriez R(1993)Optimal speedup of Las Vegas algorithms Inf. Process. Lett. 47 173-undefined