On three-point correlation functions in the gauge/gravity duality

被引:0
作者
Miguel S. Costa
Ricardo Monteiro
Jorge E. Santos
Dimitrios Zoakos
机构
[1] Faculdade de Ciências da Universidade do Porto,Centro de Física do Porto, Departamento de Física e Astronomia
[2] University of Cambridge,DAMTP, Centre for Mathematical Sciences
来源
Journal of High Energy Physics | / 2010卷
关键词
AdS-CFT Correspondence; Renormalization Group;
D O I
暂无
中图分类号
学科分类号
摘要
We study the effect of marginal and irrelevant deformations on the renormalization of operators near a CFT fixed point. New divergences in a given operator are determined by its OPE with the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{D} $\end{document} that generates the deformation. This provides a scheme to compute the couplings \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {a_{\mathcal{D}AB}} $\end{document} between the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{D} $\end{document} and two arbitrary operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{O}_A} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{O}_B} $\end{document}. We exemplify for the case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} SYM, considering the simplest case of the exact Lagrangian deformation. In this case the deformed anomalous dimension matrix is determined by the derivative of the anomalous dimension matrix with respect to the coupling. We use integrability techniques to compute the one-loop couplings \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {a_{\mathcal{L}AB}} $\end{document} between the Lagrangian and two distinct large operators built with Magnons, in the SU(2) sector of the theory. Then we consider \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {a_{\mathcal{D}AA}} $\end{document} at strong coupling, and show how to compute it using the gauge/gravity duality, when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{D} $\end{document} is a chiral operator dual to any supergravity field and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{O}_A} $\end{document} is dual to a heavy string state. We exemplify for the Lagrangian and operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{O}_A} $\end{document} dual to heavy string states, showing agreement with the prediction derived from the renormalization group arguments.
引用
收藏
相关论文
共 117 条
[1]  
Bena I(2004)Hidden symmetries of the Phys. Rev. D 69 046002-undefined
[2]  
Polchinski J(2003) × JHEP 03 013-undefined
[3]  
Roiban R(2004) superstring JHEP 05 024-undefined
[4]  
Minahan JA(2004)The Bethe-ansatz for N = 4 super Yang-Mills JHEP 07 075-undefined
[5]  
Zarembo K(2004)Classical/quantum integrability in AdS/CFT JHEP 10 016-undefined
[6]  
Kazakov VA(2005)A novel long range spin chain and planar N = 4 super Yang-Mills Nucl. Phys. B 727 1-undefined
[7]  
Marshakov A(2008)Bethe ansatz for quantum strings Adv. Theor. Math. Phys. 12 945-undefined
[8]  
Minahan JA(2006)Long-range PSU (2, 2|4) Bethe ansaetze for gauge theory and strings Phys. Rev. D 73 086006-undefined
[9]  
Zarembo K(2006)The SU(2|2) dynamic S-matrix JHEP 11 070-undefined
[10]  
Beisert N(2009)The JHEP 03 152-undefined