Overview of surface to near-surface atmospheric profiles over selected domain during the QWeCI project

被引:0
|
作者
J. N. A. Aryee
L. K. Amekudzi
W. A. Atiah
M. A. Osei
E. Agyapong
机构
[1] Kwame Nkrumah University of Science and Technology,Meteorology and Climate Science Unit, Department of Physics
来源
Meteorology and Atmospheric Physics | 2019年 / 131卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Assessing the evolution of surface to near-surface atmospheric fluxes is key to improving our understanding of their interactions, while further advancing climate applications. In this paper, an overview of the diurnal to seasonal evolution of some surface to near-surface atmospheric fluxes, coupled with their interactions, have been provided. Fluxes of downwelling and upwelling radiation (SW↓\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SW_\downarrow$$\end{document}, SW↑\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SW_\uparrow$$\end{document}, LW↓\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LW_\downarrow$$\end{document}, LW↑\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LW_\uparrow$$\end{document}), soil heat flux (ΔH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta H$$\end{document}), relative humidity (RH), rainfall (RR) and surface air temperature (T), measured from two different locations (Owabi and KNUST) and at a temporal resolution of 10 min, encompassing the quantifying weather and climate impact (QWeCI) Project period (2011–2013), were used to assess their relationship on diurnal to seasonal scales. First, diurnal assessments of the various profiles were performed. These provided information on the relatively active daytime, with the earth surface exposed to substantial SW↓\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SW_\downarrow$$\end{document}, initiating rising and sinking thermals which subsequently increased T and ΔH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta H$$\end{document}, with reductions in RH until few hours after midday, beyond which a reversal was observed. Also, ΔH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta H$$\end{document} from the vegetative terrain (Owabi) was found to be directed into the surface at daytime, and released from the sub-surface layer back into the atmosphere at night time, compensating the energy loss by LW↑\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LW_\uparrow$$\end{document} from the surface. Furthermore, rainfall (RR) in both locations were found to be generally convective and occurring mostly between 1500 GMT and 2300 GMT. The relationship between net radiation (RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_N$$\end{document}) and RR is presently statistically unclear, although rainfall peaks were found to be occurring at low RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_N$$\end{document} and relatively warmer T, accompanied by high RH. Thereafter, seasonal assessments were performed to capture the monthly-averaged diurnal variabilities in the measured surface to near-surface parameters. These showed heightened daytime T, ΔH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta H$$\end{document} and RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_N$$\end{document}, coupled with relatively low RH within the dry seasons, and more reduced profiles within the monsoon season. Additionally, countrywide assessments were performed using ERA-5 datasets which showed similarities with the in situ data. However, convective rains over the domain were not fully resolved in ERA-5. Nonetheless, the findings of this study are essential to understanding surface energy balance processes in tropical, humid climates, which is important for various climate-impact modeling applications and policy formulations over the region.
引用
收藏
页码:1067 / 1081
页数:14
相关论文
共 50 条
  • [1] Overview of surface to near-surface atmospheric profiles over selected domain during the QWeCI project
    Aryee, J. N. A.
    Amekudzi, L. K.
    Atiah, W. A.
    Osei, M. A.
    Agyapong, E.
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 2019, 131 (04) : 1067 - 1081
  • [3] Impact of Surface Waves on the Steady Near-Surface Wind Profiles over the Ocean
    Jinbao Song
    Wei Fan
    Shuang Li
    Ming Zhou
    Boundary-Layer Meteorology, 2015, 155 : 111 - 127
  • [4] Impact of Surface Waves on the Steady Near-Surface Wind Profiles over the Ocean
    Song, Jinbao
    Fan, Wei
    Li, Shuang
    Zhou, Ming
    BOUNDARY-LAYER METEOROLOGY, 2015, 155 (01) : 111 - 127
  • [5] Numerical Study of Near-Surface Jet in the Atmospheric Surface Layer Over an Oceanic Temperature Front
    Deng, Bing-Qing
    Zhao, Ming-Xiang
    Wang, Qing
    Shen, Lian
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (05)
  • [6] Near-surface turbulence in the atmospheric boundary layer
    Folz, Alan
    Wallace, James M.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (14) : 1305 - 1317
  • [7] Extreme Surface Winds during Landfalling Atmospheric Rivers: The Modulating Role of Near-Surface Stability
    Pagano, Terence J.
    Waliser, Duane E.
    Guan, Bin
    Ye, Hengchun
    Ralph, F. Martin
    Kim, Jinwon
    JOURNAL OF HYDROMETEOROLOGY, 2021, 22 (06) : 1681 - 1693
  • [8] Analysis of near-surface atmospheric variables:: Validation of the SAFRAN analysis over France
    Quintana-Segui, P.
    Le Moigne, P.
    Durand, Y.
    Martin, E.
    Habets, F.
    Baillon, M.
    Canellas, C.
    Franchisteguy, L.
    Morel, S.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (01) : 92 - 107
  • [9] The impact of atmospheric stability on the near-surface wind over sea in storm conditions
    Baas, P.
    Bosveld, F. C.
    Burgers, G.
    WIND ENERGY, 2016, 19 (02) : 187 - 198
  • [10] Near-surface profiles of aerosol number concentration and temperature over the Arctic Ocean
    Held, A.
    Orsini, D. A.
    Vaattovaara, P.
    Tjernstrom, M.
    Leck, C.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (08) : 1603 - 1616