A class of new special solution of nonlinear diffusion equation

被引:0
作者
Yan Tang
机构
[1] Chongqing Technology and Business University,College of Mathematics and Statistics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2016年 / 32卷
关键词
Nonlinear diffusion equation; explicit solution; auxiliary function; 34G20; 34L30; 35A25;
D O I
暂无
中图分类号
学科分类号
摘要
One of the most interesting problems of nonlinear differential equations is the construction of partial solutions. A new method is presented in this paper to seek special solutions of nonlinear diffusion equations. This method is based on seeking suitable function to satisfy Bernolli equation. Many new special solutions are obtained.
引用
收藏
页码:437 / 446
页数:9
相关论文
共 39 条
  • [1] Claskon P.A.(1994)Symmetry reductiona and exact solutions of a class of nonlinear heat equations Physica D 70 250-288
  • [2] Manifield E.L.(1983)The group properties of heat equation with source in two and three-deminsional case Differential equations 19 1215-1223
  • [3] Dorodnitsyn V.A.(2004)Modified extended tanh-function method for solving nonlinear partial differential equations Phys. Lett. A 299 179-188
  • [4] Knyazeva I.V.(2004)New solutions to mKdV equation Phys. Lett. A 326 364-374
  • [5] Svirshchevskii S.R.(2004)Fractional transformation and new solutions to mKdV equation Phys. Lett. A 325 363-369
  • [6] Elwakil S.A.(1993)The conditional invariance and exact solutions of the nonlinear diffsion equation Proc. Acad. Sci. Ukraine 4 37-40
  • [7] Elabany S.K.(1995)Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearties Proc. Roy. Soc. Edinburgh 125A 225-246
  • [8] Zahran M.A.(1967)Method for Solving the Korteweg-deVries Equation Phys. Rev. Lett. 19 1095-1097
  • [9] Sabry R.(1971)Exact Solution of the Korteweg de Vries Equation for Multiple Collisions of Solitons Phys. Rev. Lett. 27 1192-1194
  • [10] Fu Z.(2003)Differential constraints and exact solutions of nonlinear diffusion equations J. Phys. A: Math. Gen. 36 1401-1414