Stacking ensemble learning model to predict 6-month mortality in ischemic stroke patients

被引:0
作者
Lee Hwangbo
Yoon Jung Kang
Hoon Kwon
Jae Il Lee
Han-Jin Cho
Jun-Kyeung Ko
Sang Min Sung
Tae Hong Lee
机构
[1] Pusan National University Hospital,Department of Radiology
[2] Pusan National University Hospital,Department of Neurology
[3] Pusan National University Hospital,Department of Neurosurgery
[4] Pusan National University Hospital,Biomedical Research Institute
[5] Pusan National University,College of Medicine
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Patients with acute ischemic stroke can benefit from reperfusion therapy. Nevertheless, there are gray areas where initiation of reperfusion therapy is neither supported nor contraindicated by the current practice guidelines. In these situations, a prediction model for mortality can be beneficial in decision-making. This study aimed to develop a mortality prediction model for acute ischemic stroke patients not receiving reperfusion therapies using a stacking ensemble learning model. The model used an artificial neural network as an ensemble classifier. Seven base classifiers were K-nearest neighbors, support vector machine, extreme gradient boosting, random forest, naive Bayes, artificial neural network, and logistic regression algorithms. From the clinical data in the International Stroke Trial database, we selected a concise set of variables assessable at the presentation. The primary study outcome was all-cause mortality at 6 months. Our stacking ensemble model predicted 6-month mortality with acceptable performance in ischemic stroke patients not receiving reperfusion therapy. The area under the curve of receiver-operating characteristics, accuracy, sensitivity, and specificity of the stacking ensemble classifier on a put-aside validation set were 0.783 (95% confidence interval 0.758–0.808), 71.6% (69.3–74.2), 72.3% (69.2–76.4%), and 70.9% (68.9–74.3%), respectively.
引用
收藏
相关论文
共 50 条
[31]   A Prognostic Model for 6-Month Mortality in Elderly Survivors of Critical Illness [J].
Baldwin, Matthew R. ;
Narain, Wazim R. ;
Wunsch, Hannah ;
Schluger, Neil W. ;
Cooke, Joseph T. ;
Maurer, Mathew S. ;
Rowe, John W. ;
Lederer, David J. ;
Bach, Peter B. .
CHEST, 2013, 143 (04) :910-919
[32]   Prevalence of frailty and its ability to predict in hospital delirium, falls, and 6-month mortality in hospitalized older patients [J].
Etienne Joosten ;
Mathias Demuynck ;
Elke Detroyer ;
Koen Milisen .
BMC Geriatrics, 14
[33]   Deep learning model integrating radiologic and clinical data to predict mortality after ischemic stroke [J].
Kim, Changi ;
Kwon, Joon-myoung ;
Lee, Jiyeong ;
Jo, Hongju ;
Gwon, Dowan ;
Jang, Jae Hoon ;
Sung, Min Kyu ;
Park, Sang Won ;
Kim, Chulho ;
Oh, Mi-Young .
HELIYON, 2024, 10 (10)
[34]   Predicting 6-month modified Rankin Scale score in stroke patients [J].
Barsan, Ioana Cristina ;
Ilut, Silvina ;
Tohanean, Nicoleta ;
Pop, Raluca Maria ;
Vesa, Stefan Cristian ;
Ciumarnean, Lorena ;
Macarie, Antonia Eugenia ;
Perju-Dumbrava, Lacramioara .
BALNEO AND PRM RESEARCH JOURNAL, 2024, 15 (03)
[35]   Prooxidant-Antioxidant Balance in Stroke Patients and 6-Month Prognosis [J].
Parzadeh, Mohammad Reza ;
Azarpazhooh, Mahmoud Reza ;
Mobarra, Naser ;
Nematy, Mohsen ;
Alamdari, Dariush Hamidi ;
Tavalaie, Shima ;
Sahebkar, Amirhossein ;
Hassankhani, Bahareh ;
Ferns, Gordon ;
Ghayour-Mobarhan, Majid .
CLINICAL LABORATORY, 2011, 57 (3-4) :183-191
[36]   Machine learning is an effective method to predict the 3-month prognosis of patients with acute ischemic stroke [J].
Huang, Qing ;
Shou, Guang-Li ;
Shi, Bo ;
Li, Meng-Lei ;
Zhang, Sai ;
Han, Mei ;
Hu, Fu-Yong .
FRONTIERS IN NEUROLOGY, 2024, 15
[37]   Development, validation and clinical impact of a prediction model for 6-month mortality in older cancer patients: the GRADE [J].
Angeli, Eurydice ;
Chouahnia, Kader ;
Canoui-Poitrine, Florence ;
Duchemann, Boris ;
Aparicio, Thomas ;
Paillaud, Elena ;
Zelek, Laurent ;
Bousquet, Guilhem ;
Pamoukdjian, Frederic .
AGING-US, 2020, 12 (05) :4230-4246
[38]   Machine learning model prediction of 6-month functional outcome in elderly patients with intracerebral hemorrhage [J].
Gianluca Trevisi ;
Valerio Maria Caccavella ;
Alba Scerrati ;
Francesco Signorelli ;
Giuseppe Giovanni Salamone ;
Klizia Orsini ;
Christian Fasciani ;
Sonia D’Arrigo ;
Anna Maria Auricchio ;
Ginevra D’Onofrio ;
Francesco Salomi ;
Alessio Albanese ;
Pasquale De Bonis ;
Annunziato Mangiola ;
Carmelo Lucio Sturiale .
Neurosurgical Review, 2022, 45 :2857-2867
[39]   Machine learning model prediction of 6-month functional outcome in elderly patients with intracerebral hemorrhage [J].
Trevisi, Gianluca ;
Caccavella, Valerio Maria ;
Scerrati, Alba ;
Signorelli, Francesco ;
Salamone, Giuseppe Giovanni ;
Orsini, Klizia ;
Fasciani, Christian ;
D'Arrigo, Sonia ;
Auricchio, Anna Maria ;
D'Onofrio, Ginevra ;
Salomi, Francesco ;
Albanese, Alessio ;
De Bonis, Pasquale ;
Mangiola, Annunziato ;
Sturiale, Carmelo Lucio .
NEUROSURGICAL REVIEW, 2022, 45 (04) :2857-2867
[40]   Derivation of a bedside score (MASH-P) to predict 6-month mortality in tuberculous meningitis [J].
Rizvi, Imran ;
Malhotra, Hardeep Singh ;
Garg, Ravindra Kumar ;
Kumar, Neeraj .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2020, 415