On the existence of mild solutions for nonlocal differential equations of the second order with conformable fractional derivative

被引:0
|
作者
Mustapha Atraoui
Mohamed Bouaouid
机构
[1] Ibn Zohr University,Department of Mathematics, Faculty of Applied Sciences, Ait Melloul Campus
[2] Sultan Moulay Slimane University,Department of Mathematics, Faculty of Sciences and Technics
来源
Advances in Difference Equations | / 2021卷
关键词
Fractional differential equations; Cosine family of linear operators; Conformable fractional derivative; Nonlocal conditions; Measure of noncompactness; 34A08; 47D09;
D O I
暂无
中图分类号
学科分类号
摘要
In the work (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019), the authors have used the Krasnoselskii fixed point theorem for showing the existence of mild solutions of an abstract class of conformable fractional differential equations of the form: dαdtα[dαx(t)dtα]=Ax(t)+f(t,x(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{d^{\alpha }}{dt^{\alpha }}[\frac{d^{\alpha }x(t)}{dt^{\alpha }}]=Ax(t)+f(t,x(t))$\end{document}, t∈[0,τ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in [0,\tau ]$\end{document} subject to the nonlocal conditions x(0)=x0+g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(0)=x_{0}+g(x)$\end{document} and dαx(0)dtα=x1+h(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{d^{\alpha }x(0)}{dt^{\alpha }}=x_{1}+h(x)$\end{document}, where dα(⋅)dtα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{d^{\alpha }(\cdot)}{dt^{\alpha }}$\end{document} is the conformable fractional derivative of order α∈]0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in\, ]0,1]$\end{document} and A is the infinitesimal generator of a cosine family ({C(t),S(t)})t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\{C(t),S(t)\})_{t\in \mathbb{R}}$\end{document} on a Banach space X. The elements x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{0}$\end{document} and x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{1}$\end{document} are two fixed vectors in X, and f, g, h are given functions. The present paper is a continuation of the work (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019) in order to use the Darbo–Sadovskii fixed point theorem for proving the same existence result given in (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019) [Theorem 3.1] without assuming the compactness of the family (S(t))t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(S(t))_{t>0}$\end{document} and any Lipschitz conditions on the functions g and h.
引用
收藏
相关论文
共 50 条
  • [41] Existence Results for Second Order Differential Equations with Nonlocal Conditions in Banach Spaces
    Hernandez, Eduardo M.
    Henriquez, Hernan R.
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2009, 52 (01): : 113 - 137
  • [42] Numerical Solutions of Fractional Burgers' Type Equations with Conformable Derivative
    Senol, Mehmet
    Tasbozan, Orkun
    Kurt, Ali
    CHINESE JOURNAL OF PHYSICS, 2019, 58 : 75 - 84
  • [43] EXISTENCE OF A MILD SOLUTION FOR SOBOLEV TYPE STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS
    Chadha, Alka
    Pandey, D. N.
    Bahuguna, Dhirendra
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [44] Solving a class of ordinary differential equations and fractional differential equations with conformable derivative by fractional Laplace transform
    Molaei, Mohammad
    Dastmalchi Saei, Farhad
    Javidi, Mohammad
    Mahmoudi, Yaghoub
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (07) : 3025 - 3044
  • [45] Existence of mild solutions to semilinear fractional differential inclusion with deviated advanced nonlocal conditions
    Mohamed A. E. Herzallah
    Ashraf H. A. Radwan
    Journal of the Egyptian Mathematical Society, 27 (1)
  • [46] MILD SOLUTIONS FOR NONLOCAL FRACTIONAL SEMILINEAR FUNCTIONAL DIFFERENTIAL INCLUSIONS INVOLVING CAPUTO DERIVATIVE
    Ibrahim, Ahmed G.
    Almoulhim, Noriah
    MATEMATICHE, 2014, 69 (01): : 125 - 148
  • [47] EXISTENCE OF MILD SOLUTIONS FOR FRACTIONAL EVOLUTION EQUATIONS
    Zhou, Yong
    Zhang, Lu
    Shen, Xiao Hui
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2013, 25 (04) : 557 - 586
  • [48] EXISTENCE OF MILD SOLUTIONS FOR FRACTIONAL EVOLUTION EQUATIONS
    Zhang, Zufeng
    Liu, Bin
    FIXED POINT THEORY, 2014, 15 (01): : 325 - 334
  • [49] Sufficient conditions for existence of mild solutions for nondensely defined conformable fractional evolution equations in Banach spaces
    El Asraoui, Hiba
    El Mfadel, Ali
    Hilal, Khalid
    Elomari, Mhamed
    FILOMAT, 2024, 38 (06) : 2127 - 2142
  • [50] EXISTENCE RESULTS FOR DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER AND IMPULSES
    Agarwal, Ravi P.
    Benchohra, Mouffak
    Slimani, Boualem Attou
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2008, 44 : 1 - 21