On the existence of mild solutions for nonlocal differential equations of the second order with conformable fractional derivative

被引:0
|
作者
Mustapha Atraoui
Mohamed Bouaouid
机构
[1] Ibn Zohr University,Department of Mathematics, Faculty of Applied Sciences, Ait Melloul Campus
[2] Sultan Moulay Slimane University,Department of Mathematics, Faculty of Sciences and Technics
来源
Advances in Difference Equations | / 2021卷
关键词
Fractional differential equations; Cosine family of linear operators; Conformable fractional derivative; Nonlocal conditions; Measure of noncompactness; 34A08; 47D09;
D O I
暂无
中图分类号
学科分类号
摘要
In the work (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019), the authors have used the Krasnoselskii fixed point theorem for showing the existence of mild solutions of an abstract class of conformable fractional differential equations of the form: dαdtα[dαx(t)dtα]=Ax(t)+f(t,x(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{d^{\alpha }}{dt^{\alpha }}[\frac{d^{\alpha }x(t)}{dt^{\alpha }}]=Ax(t)+f(t,x(t))$\end{document}, t∈[0,τ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in [0,\tau ]$\end{document} subject to the nonlocal conditions x(0)=x0+g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(0)=x_{0}+g(x)$\end{document} and dαx(0)dtα=x1+h(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{d^{\alpha }x(0)}{dt^{\alpha }}=x_{1}+h(x)$\end{document}, where dα(⋅)dtα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{d^{\alpha }(\cdot)}{dt^{\alpha }}$\end{document} is the conformable fractional derivative of order α∈]0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in\, ]0,1]$\end{document} and A is the infinitesimal generator of a cosine family ({C(t),S(t)})t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\{C(t),S(t)\})_{t\in \mathbb{R}}$\end{document} on a Banach space X. The elements x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{0}$\end{document} and x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{1}$\end{document} are two fixed vectors in X, and f, g, h are given functions. The present paper is a continuation of the work (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019) in order to use the Darbo–Sadovskii fixed point theorem for proving the same existence result given in (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019) [Theorem 3.1] without assuming the compactness of the family (S(t))t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(S(t))_{t>0}$\end{document} and any Lipschitz conditions on the functions g and h.
引用
收藏
相关论文
共 50 条
  • [31] EXISTENCE OF A MILD SOLUTION FOR IMPULSIVE NEUTRAL FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS
    Chadha, Alka
    Pandey, Dwijendra N.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2015, 7 (02): : 151 - 168
  • [32] Existence of solutions for integro-differential equations of fractional order with nonlocal three-point fractional boundary conditions
    Ravi P Agarwal
    Sotiris K Ntouyas
    Bashir Ahmad
    Mohammed S Alhothuali
    Advances in Difference Equations, 2013
  • [33] SOLUTIONS TO NONLOCAL FRACTIONAL DIFFERENTIAL EQUATIONS USING A NONCOMPACT SEMIGROUP
    Ji, Shaochun
    Li, Gang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [34] Existence of solutions for integro-differential equations of fractional order with nonlocal three-point fractional boundary conditions
    Agarwal, Ravi P.
    Ntouyas, Sotiris K.
    Ahmad, Bashir
    Alhothuali, Mohammed S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [35] EXISTENCE OF MILD SOLUTIONS FOR FRACTIONAL DIFFERENTIAL EQUATIONS IN SEPARABLE BANACH SPACE
    Jawahdou, Adel
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2015, 7 (04): : 489 - 501
  • [36] Oscillation for a Class of Fractional Differential Equations with Damping Term in the Sense of the Conformable Fractional Derivative
    Feng, Qinghua
    ENGINEERING LETTERS, 2022, 30 (01) : 311 - 317
  • [37] EXISTENCE OF SOLUTIONS TO NONLOCAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES
    Cao Labora, Daniel
    Rodriguez-Lopez, Rosana
    Belmekki, Mohammed
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [38] EXISTENCE OF MILD SOLUTIONS FOR NONLOCAL INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Zhu, Tao
    Song, Chao
    Li, Gang
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2012, 10 (01): : 57 - 67
  • [39] Existence Results of Mild Solutions for Impulsive Fractional Integrodifferential Evolution Equations With Nonlocal Conditions
    Zhang, Xuping
    Gou, Haide
    Li, Yongxiang
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (01) : 1 - 16
  • [40] The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay
    Zhang, Xianmin
    Huang, Xiyue
    Liu, Zuohua
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (04) : 775 - 781