On the existence of mild solutions for nonlocal differential equations of the second order with conformable fractional derivative

被引:0
|
作者
Mustapha Atraoui
Mohamed Bouaouid
机构
[1] Ibn Zohr University,Department of Mathematics, Faculty of Applied Sciences, Ait Melloul Campus
[2] Sultan Moulay Slimane University,Department of Mathematics, Faculty of Sciences and Technics
来源
Advances in Difference Equations | / 2021卷
关键词
Fractional differential equations; Cosine family of linear operators; Conformable fractional derivative; Nonlocal conditions; Measure of noncompactness; 34A08; 47D09;
D O I
暂无
中图分类号
学科分类号
摘要
In the work (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019), the authors have used the Krasnoselskii fixed point theorem for showing the existence of mild solutions of an abstract class of conformable fractional differential equations of the form: dαdtα[dαx(t)dtα]=Ax(t)+f(t,x(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{d^{\alpha }}{dt^{\alpha }}[\frac{d^{\alpha }x(t)}{dt^{\alpha }}]=Ax(t)+f(t,x(t))$\end{document}, t∈[0,τ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in [0,\tau ]$\end{document} subject to the nonlocal conditions x(0)=x0+g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(0)=x_{0}+g(x)$\end{document} and dαx(0)dtα=x1+h(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{d^{\alpha }x(0)}{dt^{\alpha }}=x_{1}+h(x)$\end{document}, where dα(⋅)dtα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{d^{\alpha }(\cdot)}{dt^{\alpha }}$\end{document} is the conformable fractional derivative of order α∈]0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in\, ]0,1]$\end{document} and A is the infinitesimal generator of a cosine family ({C(t),S(t)})t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\{C(t),S(t)\})_{t\in \mathbb{R}}$\end{document} on a Banach space X. The elements x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{0}$\end{document} and x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{1}$\end{document} are two fixed vectors in X, and f, g, h are given functions. The present paper is a continuation of the work (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019) in order to use the Darbo–Sadovskii fixed point theorem for proving the same existence result given in (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019) [Theorem 3.1] without assuming the compactness of the family (S(t))t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(S(t))_{t>0}$\end{document} and any Lipschitz conditions on the functions g and h.
引用
收藏
相关论文
共 50 条