A Variant of a Generalized Quadratic Functional Equation on Groups

被引:0
作者
Heather Hunt Elfen
Thomas Riedel
Prasanna K. Sahoo
机构
[1] Robert Morris University,Department of Mathematics
[2] University of Louisville,Department of Mathematics
来源
Results in Mathematics | 2017年 / 72卷
关键词
Bihomomorphism; group; homomorphism; involutive endomorphism; quadratic functional equation; semigroup; Primary 39B52; 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a group and C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} the field of complex numbers. Suppose σ:G→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma : G \rightarrow G$$\end{document} is an involutive endomorphism, that is, σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is an endomorphism of G and it satisfies the condition σ(σ(x))=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (\sigma (x)) = x$$\end{document} for all x in G. In this paper, we find the solutions f,g,h,k:G→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f, g, h, k : G\rightarrow \mathbb {C}$$\end{document} of the equation f(xy)+g(σ(y)x)=h(x)+k(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(xy) + g(\sigma (y) x) = h(x) + k(y)$$\end{document}for allx,y∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {for all } x, y \in G$$\end{document} assuming f and g to be central functions. This equation is a variant of a generalized quadratic functional equation on groups with an involutive endomorphism. As an application, using the solutions of this equation, we find the solutions f,g,h,k:G×G→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f, g, h , k : G \times G \rightarrow \mathbb {C}$$\end{document} of the equation f(pr,qs)+g(sp,rq)=h(p,q)+k(r,s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(pr, qs)+g(sp,rq) = h(p,q) + k(r,s)$$\end{document} for all p,q,r,s∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p, q, r, s \in G$$\end{document} assuming f and g to be central functions.
引用
收藏
页码:555 / 571
页数:16
相关论文
共 23 条
  • [1] Aczél J(1965)The general solution of two functional equations by reduction to functions additive in two variables and with aid of Hamel bases Glasnik Mat.-Fiz. Astronom. Drustvo Mat. Fiz. Hrvatske 20 65-73
  • [2] Aczél J(1963)Über eine gemeinsame Verallgemeinerung zweier Funktionalgleichungen von Jensen Publ. Math. Debr. 10 326-344
  • [3] Vincze E(2007)Hyers–Ulam stability of the generalized quadratic functional equation in amenable semigroups J. Inequal. Pure Appl. Math. 8 18-1161
  • [4] Belaid B(1995)On a quadratic-trigonometric functional equation and some applications Trans Am. Math. Soc. 347 1131-155
  • [5] Elhoucien E(1878)Om Fundamentalligningers “Opløsning” ved elementære Midler Tidsskrift for matematik 2 149-28
  • [6] Ahmed R(1897)Om Lösning at Funktionalligninger med det mindste Maal af Forudsætninger Nyt tidsskrift for matematik 8 25-723
  • [7] Chung JK(1935)On the inner products in linear metric spaces Ann. Math. 36 719-78
  • [8] Ebanks BR(1959)On the quadratic functional Publ. Inst. Math. Acad. Serb. Sci. 13 58-263
  • [9] Ng CT(1997)On two functional equations connected with the characterizations of the distance measures Aequ. Math. 54 242-135
  • [10] Sahoo PK(1995)On a generalization of a functional equation associated with the distance between the probability distributions Publ. Math. Debr. 46 125-303