Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance

被引:0
|
作者
Faqing Cao
Baohu Wu
Tianyu Li
Shengtong Sun
Yucong Jiao
Peiyi Wu
机构
[1] Donghua University,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry Chemical Engineering and Biotechnology & Center for Advanced Low
[2] Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich,dimension Materials
[3] Chinese Academy of Sciences,Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics
来源
Nano Research | 2022年 / 15卷
关键词
Zn-ion batteries; dendrite growth; interfacial adaptivity; gel electrolytes; fast-charging;
D O I
暂无
中图分类号
学科分类号
摘要
The safe, flexible, and environment-friendly Zn-ion batteries have aroused great interests nowadays. Nevertheless, flagrant Zn dendrite uncontrollably grows in liquid electrolytes due to insufficient surface protection, which severely impedes the future applications of Zn-ion batteries especially at high current densities. Gel electrolytes are emerging to tackle this issue, yet the required high modulus for inhibiting dendrite growth as well as concurrent poor interfacial contact with roughened Zn electrodes are not easily reconcilable to regulate the fragile Zn/Zn2+ interface. Here we demonstrate, such a conflict may be defeated by using a mechanoadaptive cellulose nanofibril-based morphing gel electrolyte (MorphGE), which synergizes bulk compliance for optimizing interfacial contact as well as high modulus for suppressing dendrite formation. Moreover, by anchoring desolvated Zn2+ on cellulose nanofibrils, the side reactions which induce dendrite formation are also significantly reduced. As a result, the MorphGE-based symmetrical Zn-ion battery demonstrated outstanding stability for more than 100 h at the high current density of 10 mA·cm−2 and areal capacity of 10 mA·h·cm−2, and the corresponding Zn-ion battery delivered a prominent specific capacity of 100 mA·h·g−1 for more than 500 cycles at 20 C. The present example of engineering the mechanoadaptivity of gel electrolytes will shed light on a new pathway for designing highly safe and flexible energy storage devices.
引用
收藏
页码:2030 / 2039
页数:9
相关论文
共 50 条
  • [1] Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance
    Cao, Faqing
    Wu, Baohu
    Li, Tianyu
    Sun, Shengtong
    Jiao, Yucong
    Wu, Peiyi
    NANO RESEARCH, 2022, 15 (03) : 2030 - 2039
  • [2] Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries
    Dai, Yuhang
    Lu, Ruihu
    Zhang, Chengyi
    Li, Jiantao
    Yuan, Yifei
    Mao, Yu
    Ye, Chumei
    Cai, Zhijun
    Zhu, Jiexin
    Li, Jinghao
    Yu, Ruohan
    Cui, Lianmeng
    Zhao, Siyu
    An, Qinyou
    He, Guanjie
    Waterhouse, Geoffrey I. N.
    Shearing, Paul R.
    Ren, Yang
    Lu, Jun
    Amine, Khalil
    Wang, Ziyun
    Mai, Liqiang
    NATURE CATALYSIS, 2024, 7 (07): : 776 - 784
  • [3] A Semisolid Electrolyte for Flexible Zn-Ion Batteries
    Lu, Yanying
    Zhu, Tianyu
    Xu, Nansheng
    Huang, Kevin
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6904 - 6910
  • [4] Electrolyte Design for Fast-Charging Li-Ion Batteries
    Logan, E. R.
    Dahn, J. R.
    TRENDS IN CHEMISTRY, 2020, 2 (04): : 354 - 366
  • [5] Zn dendrite suppression and solid electrolyte interface control using N-allylthiourea as an electrolyte additive for aqueous Zn-ion batteries
    Olidan, Syryll
    Kim, Jihoon
    Cho, Kuk Young
    Yoon, Sukeun
    ELECTROCHIMICA ACTA, 2024, 476
  • [6] Unveiling the influences of electrolyte additives on the fast-charging performance of lithium-ion batteries
    Schmidt, Rachel
    Liu, Chen
    Cui, Zehao
    Manthiram, Arumugam
    JOURNAL OF POWER SOURCES, 2025, 627
  • [7] Electrolyte Design Strategies for Fast-Charging Lithium-Ion Batteries
    Chen, Ying
    Qin, Jiahe
    Gao, Zhifeng
    Sha, Junhui
    Chen, Taiqiang
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2024, 48 (07): : 1027 - 1040
  • [8] A superconcentrated ether electrolyte for fast-charging Li-ion batteries
    Yamada, Yuki
    Yaegashi, Makoto
    Abe, Takeshi
    Yamada, Atsuo
    CHEMICAL COMMUNICATIONS, 2013, 49 (95) : 11194 - 11196
  • [9] Electrolyte engineering enables stable Zn-Ion deposition for long-cycling life aqueous Zn-ion batteries
    Wu, Yan
    Zhu, Zhaohua
    Shen, Dong
    Chen, Lina
    Song, Tianyi
    Kang, Tianxing
    Tong, Zhongqiu
    Tang, Yongbing
    Wang, Hui
    Lee, Chun Sing
    ENERGY STORAGE MATERIALS, 2022, 45 : 1084 - 1091
  • [10] A Dual Organic Solvent Zn-Ion Electrolyte Enables Highly Stable Zn Metal Batteries
    He, Ruiqi
    Yu, Fangfang
    Wu, Kuan
    Liu, Hao-Xuan
    Li, Zhen
    Liu, Hua Kun
    Dou, Shi-Xue
    Wu, Chao
    NANO LETTERS, 2023, 23 (13) : 6050 - 6058