Finite groups in which Sylow normalizers have nilpotent Hall supplements

被引:0
作者
Baojun Li
Wenbin Guo
Jianhong Huang
机构
[1] Chengdu University of Information Technology,
[2] Xuzhou Normal University,undefined
[3] University of Science and Technology of P. R. China,undefined
来源
Siberian Mathematical Journal | 2009年 / 50卷
关键词
finite group; Sylow subgroup; normalizer; nilpotent Hall supplement; soluble group;
D O I
暂无
中图分类号
学科分类号
摘要
The normalizer of each Sylow subgroup of a finite group G has a nilpotent Hall supplement in G if and only if G is soluble and every tri-primary Hall subgroup H (if exists) of G satisfies either of the following two statements: (i) H has a nilpotent bi-primary Hall subgroup; (ii) Let π(H) = {p, q, r}. Then there exist Sylow p-, q-, r-subgroups Hp, Hq, and Hr of H such that Hq ⊆ NH(Hp), Hr ⊆ NH(Hq), and Hp ⊆ NH(Hr).
引用
收藏
页码:667 / 673
页数:6
相关论文
共 10 条
[1]  
Guo W.(1993)On normalizers of Sylow subgroups Dokl. Akad. Nauk BSSR 37 22-24
[2]  
D’Aniello A.(2004)Saturated formations and Sylow normalizers Bull. Austral. Math. Soc. 69 522-548
[3]  
Vivi D.(1998)Number of Sylow subgroups and J. Algebra 201 71-85
[4]  
Giordano G.(1995)-nilpotence of finite groups J. Algebra 176 111-123
[5]  
Chigira N.(2005)Sylow numbers of finite groups J. Appl. Algebra Discrete Struct. 3 1-9
[6]  
Zhang J.(1954)A note on finite groups whose normalizers of Sylow 2-, 3-subgroups are prime power indices Math. Z. 60 407-408
[7]  
Guo W.(1951)Zum Satz von Sylow Math. Z. 55 1-7
[8]  
Shum K. P.(undefined)Über das Produkt paarweise vertauschbarer nilpotenter Gruppen undefined undefined undefined-undefined
[9]  
Wielandt H.(undefined)undefined undefined undefined undefined-undefined
[10]  
Wielandt H.(undefined)undefined undefined undefined undefined-undefined