A Crank–Nicolson difference scheme for the time variable fractional mobile–immobile advection–dispersion equation

被引:0
作者
Zhengguang Liu
Xiaoli Li
机构
[1] Shandong University,School of Mathematics
来源
Journal of Applied Mathematics and Computing | 2018年 / 56卷
关键词
Variable order derivative; Crank–Nicolson finite difference; Mobile–immobile advection–dispersion equation; Stability results; Error estimates; Numerical examples; 26A33; 65M06; 65M12; 65M15; 65M55;
D O I
暂无
中图分类号
学科分类号
摘要
A Crank–Nicolson finite difference scheme to solve a time variable order fractional mobile–immobile advection–dispersion equation is introduced and analyzed. Some a priori estimates of discrete L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm with order of convergence O(τ+h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\tau +h^2)$$\end{document} are established on uniform grids where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} and h are the steps sizes in time and space. Stability and convergence of the numerical solutions are presented in detail. Numerical examples are provided to verify the theoretical analysis.
引用
收藏
页码:391 / 410
页数:19
相关论文
共 62 条
[1]  
Zhang N(2012)Finite difference/element method for a two-dimensional modified fractional diffusion equation Adv. Appl. Math. Mech. 4 496-518
[2]  
Deng W(2011)High-order finite element methods for time-fractional partial differential equations J. Comput. Appl. Math. 235 3285-3290
[3]  
Wu Y(2010)Finite central difference/finite element approximations for parabolic integro-differential equations Computing 90 89-111
[4]  
Jiang Y(2013)The use of finite difference/element approaches for solving the time-fractional subdiffusion equation SIAM J. Sci. Comput. 35 A2976-A3000
[5]  
Ma J(2014)A mixed finite element method for a time-fractional fourth-order partial differential equation Appl. Math. Comput. 243 703-717
[6]  
Li W(2015)An J. Appl. Math. Comput. 47 103-117
[7]  
Da X(2012)-Galerkin mixed finite element method for time fractional reaction–diffusion equation Comput. Math. Appl. 64 3141-3152
[8]  
Zeng F(2014)A second order explicit finite difference method for the fractional advection diffusion equation J. Comput. Phys. 278 257-274
[9]  
Li C(2009)An explicit high order method for fractional advection diffusion equations J. Comput. Phys. 228 4038-4054
[10]  
Liu F(2013)Finite difference approximations for a fractional advection diffusion problem Numer. Algorithms 64 707-720