Variational Inequalities in Hilbert Spaces with Measures and Optimal Stopping Problems

被引:0
作者
Viorel Barbu
Carlo Marinelli
机构
[1] University Al. I. Cuza,Institut für Angewandte Mathematik
[2] Universität Bonn,undefined
来源
Applied Mathematics and Optimization | 2008年 / 57卷
关键词
Variational inequalities; Excessive measures; Kolmogorov operators; -accretive operators;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence theory for parabolic variational inequalities in weighted L2 spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L2 setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coefficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs.
引用
收藏
页码:237 / 262
页数:25
相关论文
共 26 条
[1]  
Albeverio S.(1999)On uniqueness of invariant measures for finite- and infinite-dimensional diffusions Commun. Pure Appl. Math. 52 325-362
[2]  
Bogachev V.(2006)Optimal stopping-time problem for stochastic Navier-Stokes equations and infinite-dimensional variational inequalities Nonlinear Anal. 64 1018-1024
[3]  
Röckner M.(1984)On the theory of option pricing Acta Appl. Math. 2 139-158
[4]  
Barbu V.(2001)On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions Commun. Partial Differ. Equ. 26 2037-2080
[5]  
Sritharan S.S.(1972)Problèmes unilatéraux J. Math. Pures Appl. 51 1-168
[6]  
Bensoussan A.(1978)Representation theorem for general stochastic delay equations Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 26 635-642
[7]  
Bogachev V.I.(1999)Optimal stopping in Hilbert spaces and pricing of American options Math. Methods Oper. Res. 50 135-147
[8]  
Krylov N.V.(1966)On the Stefan problem and optimal stopping rules for Markov processes Theor. Probab. Appl. 11 541-558
[9]  
Röckner M.(1993)A closed-form solution for options with stochastic volatility with applications to bond and currency options Rev. Financ. Stud. 6 327-343
[10]  
Brézis H.(1990)Variational inequalities and the pricing of American options Acta Appl. Math. 21 263-289