Approximation characteristics of the classes Bp,θ Ω of periodic functions of many variables

被引:0
作者
Stasyuk S.A. [1 ]
Fedunyk O.V. [1 ]
机构
[1] Institute of Mathematics, Ukrainian Academy of Sciences, Kyiv
关键词
Periodic Function; Trigonometric Polynomial; Auxiliary Statement; Approximation Characteristic; Hyperbolic Cross;
D O I
10.1007/s11253-006-0101-x
中图分类号
学科分类号
摘要
We obtain exact order estimates for the approximation of the classes B p,θΩ of periodic functions of many variables in the space Lq by using operators of orthogonal projection and linear operators satisfying certain conditions. © 2006 Springer Science+Business Media, Inc.
引用
收藏
页码:779 / 793
页数:14
相关论文
共 13 条
[1]  
Bari N.K., Stechkin S.B., Best approximations and differential properties of two conjugate functions, Tr. Mosk. Mat. Obshch., 5, pp. 483-522, (1956)
[2]  
Youngsheng S., Heping W., Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness, Tr. Mat. Inst. Ros. Akad. Nauk, 219, pp. 356-377, (1997)
[3]  
Nikol'skii S.M., Approximation of Functions of Many Variables and Imbedding Theorems [in Russian], (1977)
[4]  
Pustovoitov N.N., Multidimensional Jackson theorem in the space L<sub>p</sub>, Mat. Zametki, 52, 1, pp. 35-48, (1992)
[5]  
Pustovoitov N.N., Representation and approximation of periodic functions of many variables with given mixed modulus of continuity, Anal. Math., 20, pp. 35-48, (1994)
[6]  
Temlyakov V.N., Widths of certain classes of functions of many variables, Dokl. Akad. Nauk SSSR, 267, 2, pp. 314-317, (1982)
[7]  
Temlyakov V.N., Estimates for asymptotic characteristics of classes of functions with bounded mixed derivative, Tr. Mat. Inst. Akad. Nauk SSSR, 189, pp. 138-168, (1989)
[8]  
Temlyakov V.N., Approximation of functions with bounded mixed derivative, Tr. Mat. Inst. Akad. Nauk SSSR, 178, pp. 1-112, (1986)
[9]  
Romanyuk A.S., Estimates for approximation characteristics of the Besov classes B <sub>p,θ</sub><sup>r</sup> of periodic functions of many variables in the space L<sub>q</sub>. I, Ukr. Mat. Zh., 53, 9, pp. 1224-1231, (2001)
[10]  
Romanyuk A.S., Estimates for approximation characteristics of the Besov classes B <sub>p,θ</sub><sup>r</sup> of periodic functions of many variables in the space L<sub>q</sub>. II, Ukr. Mat. Zh., 53, 10, pp. 1402-1408, (2001)