A generalized normal form and formal equivalence of two-dimensional systems with quadratic zero approximation: III

被引:0
|
作者
V. V. Basov
机构
[1] St. Petersburg State University,
来源
Differential Equations | 2006年 / 42卷
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Normal Form; Functional Equation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:327 / 339
页数:12
相关论文
共 50 条
  • [31] A linear-quadratic optimal regulator for two-dimensional systems
    Jagannathan, M
    Syrmos, VL
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 4172 - 4177
  • [32] Coexistence of Two-Dimensional Attractors in Border Collision Normal Form
    Wong, Chi Hong
    Yang, Xue
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (09):
  • [33] Renormalization of the Two-Dimensional Border-Collision Normal Form
    Ghosh, Indranil
    Simpson, David J. W.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (12):
  • [34] Two-dimensional attractors in the border-collision normal form
    Glendinning, Paul
    Wong, Chi Hong
    NONLINEARITY, 2011, 24 (04) : 995 - 1010
  • [35] Ladder approximation for the AC conductivity in the generalized two-dimensional Hubbard model
    Lima, L. S.
    SOLID STATE COMMUNICATIONS, 2017, 258 : 21 - 24
  • [36] Generalized surface multifractality in two-dimensional disordered systems
    Babkin, Serafim S.
    Karcher, Jonas F.
    Burmistrov, Igor S.
    Mirlin, Alexander D.
    PHYSICAL REVIEW B, 2023, 108 (10)
  • [37] Generalized network theory of physical two-dimensional systems
    Morley, David Ormrod
    Thorneywork, Alice L.
    Dullens, Roel P. A.
    Wilson, Mark
    PHYSICAL REVIEW E, 2020, 101 (04)
  • [38] Generalized Two-dimensional Correlation Analysis for Unimodal Waveforms Modeled by Quadratic Polynomials
    Tatsuro Sugawara
    Takakazu Nakabayashi
    Shin-Ichi Morita
    Analytical Sciences, 2018, 34 : 845 - 847
  • [39] Generalized Two-dimensional Correlation Analysis for Unimodal Waveforms Modeled by Quadratic Polynomials
    Sugawara, Tatsuro
    Nakabayashi, Takakazu
    Morita, Shin-ichi
    ANALYTICAL SCIENCES, 2018, 34 (07) : 845 - 847