Topological and algebraic genericity and spaceability for an extended chain of sequence spaces

被引:0
作者
M. Axarlis
I. Deliyanni
Th. Loukidou
V. Nestoridis
K. Papanikos
N. Tziotziou
机构
[1] University of Athens,Department of Mathematics
来源
Monatshefte für Mathematik | 2023年 / 200卷
关键词
Topological genericity; Algebraic genericiy; Spaceability; Baire’s theorem; spaces; Topological genericity; Algebraic genericiy; Spaceability; Baire’s theorem; spaces; 46A45; 46E10; 46E15;
D O I
暂无
中图分类号
学科分类号
摘要
Given a pair of topological vector spaces X,Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X,\; Y$$\end{document} where X is a proper linear subspace of Y it is examined whether Y\X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y\setminus X$$\end{document} is residual in Y (topological genericity), whether Y\X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y\setminus X$$\end{document} contains a dense linear subspace of Y except 0 (algebraic genericity) and whether Y\X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y\setminus X$$\end{document} contains a closed infinite dimensional subspace of Y except 0 (spaceability). In the present paper the spaces X and Y are either sequence spaces or spaces of analytic functions on the unit disc regarded as sequence spaces via the identification of a function with the sequence of its Taylor coefficients. For the spaces under consideration we give an affirmative answer to each of these questions providing general proofs which extend previous results.
引用
收藏
页码:495 / 505
页数:10
相关论文
共 14 条
  • [1] Aron RM(2009)On dense-lineability of sets of functions on Topology 48 149-156
  • [2] García-Pacheco FJ(2008)Abstract theory of universal series and applications Proc. Lond. Math. Soc. (3) 96 417-463
  • [3] Pérez-García D(2021)Topological and algebraic genericity in chains of sequence spaces and fuction spaces Bull. Hellenic Math. Soc. 65 9-16
  • [4] Seoane-Sepúlveda JB(2014)Linear subsets of nonlinear sets in topological vector spaces Bull. Amer. Math. Soc. (N.S.) 51 71-130
  • [5] Bayart F(2021)Intersections of J. Math. Anal. Appl. 498 124922-undefined
  • [6] Grosse-Erdmann KG(undefined) spaces in the Borel hierarchy undefined undefined undefined-undefined
  • [7] Nestoridis V(undefined)undefined undefined undefined undefined-undefined
  • [8] Papadimitropoulos C(undefined)undefined undefined undefined undefined-undefined
  • [9] Bernal-González L(undefined)undefined undefined undefined undefined-undefined
  • [10] Nestoridis V(undefined)undefined undefined undefined undefined-undefined