DNA multi-secret sharing schemes based on linear codes over Z4×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{4} \times R$$\end{document}

被引:0
作者
Ahlem Melakhessou
Karima Chatouh
Kenza Guenda
机构
[1] University of Batna2,Laboratoire D’applications des Mathématiques à L’informatique et à L’électronique, Faculty of Mathematics and Computer Science
[2] University of Batna 1,Laboratoire D’applications des Mathématiques à L’informatique et à L’électronique Faculty of Economic, Commercial and Management Sciences
[3] USTHB,Laboratory of Algebra and Number Theory, Faculty of Mathematics
关键词
DNA codes; Gray map; DNA simplex codes; DNA MacDonald codes; Multi-secret sharing schemes; 11TXX; 11T71; 14G50; 94B05;
D O I
10.1007/s12190-023-01941-0
中图分类号
学科分类号
摘要
In this work, we study the DNA multi-secret sharing schemes (DNA-MSSS) based on codes over the ring Z4×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{4} \times R$$\end{document} where R=Z4+uZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R={\mathbb {Z}}_{4}+u{\mathbb {Z}}_{4}$$\end{document}, with u2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^{2}=0$$\end{document}. We establish a one-to-one correspondence between the elements of the ring Z4×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {Z}}_{4} \times R$$\end{document} and 64 codons by introducing a Gray map ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}. The DNA simplex codes and DNA first order of Reed–Muller codes over Z4×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{4} \times R$$\end{document} are obtained. This work concludes with examples of DNA multi-secret sharing schemes based on codes over the ring Z4×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {Z}}_{4} \times R$$\end{document} and Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {Z}}_{4} $$\end{document}.
引用
收藏
页码:4833 / 4853
页数:20
相关论文
共 45 条
[1]  
Adleman LM(1994)Molecular computation of solutions to combinatorial problems Science 266 1021-1024
[2]  
Alahmadi A(2020)A multi-secret sharing scheme based on LCD codes Mathematics 8 272-882
[3]  
Altassan A(2020)On Fin. Field. Appl. 62 101622-114
[4]  
AlKenani A(2021)-additive complementary dual codes and related LCD codes Filomat 35 871-222
[5]  
Calkavur S(2017)On One-Weight and ACD Codes in Int. J. Comput. 94 107-478
[6]  
Hatoon S(2017)Multisecret sharing schemes and bounded distance decoding of linear codes J. Appl. Math. Comput. 53 201-39
[7]  
Patrick S(2017)On some classes of linear codes over J. Appl. Math. Comput. 55 455-39
[8]  
Benbelkacem N(2020) and their covering radii Compu. Appl. Math. 39 1-231
[9]  
Borges J(2016)Simplex and MacDonald codes over J. Algebra Number Theory: Adv. Appl. 16 25-459
[10]  
Dougherty ST(2021)New classes of codes over J. Algebra Comb. Discrete Appl. 8 219-19