Random sums of random variables and vectors: Including infinite means and unequal length sums

被引:0
作者
Edward Omey
Rein Vesilo
机构
[1] Research Centre for Quantitative Business Functions,Department of Engineering
[2] KU Leuven,undefined
[3] Macquarie University,undefined
来源
Lithuanian Mathematical Journal | 2015年 / 55卷
关键词
random sum; regular variation; subexponential distribution; -regular variation; infinite mean; dependence; 60G50; 62E20; 60E99;
D O I
暂无
中图分类号
学科分类号
摘要
Let {X, Xi, i = 1, 2, …} be independent nonnegative random variables with common distribution function F(x), and let N be an integer-valued random variable independent of X. Using S0 = 0 and Sn = Sn−1 + X the random sum SN has the distribution function G(x) = ∑i = 0∞P(N = i) P(Si≼ x) and tail distribution G¯x=1−Gx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{G}(x)=1-G(x) $$\end{document}. Under suitable conditions, it can be proved That G¯x∼ENF¯xasx→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{G}(x)\sim \mathrm{E}(N)\overline{\mathrm{F}}(x)\;\mathrm{a}\mathrm{s}\;x\to \infty $$\end{document}. In this paper, we extend previous results to obtain general bounds and asymptotic bounds and equalities for random sums where the components can be independent with infinite mean, regularly varying with index 1 or O-regularly varying. In the multivariate case, we obtain asymptotic equalities for multivariate sums with unequal numbers of terms in each dimension.
引用
收藏
页码:433 / 450
页数:17
相关论文
共 41 条
[1]  
Ali MM(1978)A class of bivariate distributions including the bivariate logistic J. Multivariate Anal. 8 405-412
[2]  
Mikhail NN(2006)Hazard rates and subexponential distributions Publ. Inst. Math., Nouv. Sér. 80 29-46
[3]  
Haq MS(1964)A theorem on sums of independent positive random variables and its application to branching random processes Theory Probab. Appl. 9 640-648
[4]  
Baltrūnas A(1973)Functions of probability measures J. Anal. Math. 26 255-302
[5]  
Omey E(1987)Convolutions of distributions with exponential and subexponential tails J. Aust. Math. Soc., Ser. A 43 347-365
[6]  
Van Gulck S(1981)A continuous general multivariate distribution and its properties Commun. Stat., Theory Methods 10 339-353
[7]  
Chistyakov VP(2007)The tail behaviour of a random sum of subexponential random variables and vectors Extremes 10 21-39
[8]  
Chover J(1979)Subexponentiality and infinite divisibility Z. Wahrscheinlichkeitstheor. Verw. Geb. 49 335-347
[9]  
Ney P(2006)Modeling teletraffic arrivals by a Poisson cluster process Queueing Syst. 54 121-140
[10]  
Wainger S(1983)Integrals and derivatives of regularly varying functions in R Stochastic Processes Appl. 16 157-170