Congruences and ideals in pseudoeffect algebras

被引:0
作者
Hai-Yang Li
Sheng-Gang Li
机构
[1] Shaanxi Normal University,Department of Mathematics
[2] Xi’an Polytechnic University,School of Science
来源
Soft Computing | 2008年 / 12卷
关键词
Pseudoeffect algebras; Ideals; Riesz ideals; Normal weak Riesz ideals; Congruences; Strong congruences; Riesz strong congruences;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to congruences and ideals in pseudoeffect algebras. Let I be a normal ideal in a pseudoeffect algebra E. We show that: (1) the relation ~I induced by I is a congruence if and only if for every a∈E, I∩ [0,a] is upper directed; (2) the relation ~I induced by I is a strong congruence if and only if I is a normal weak Riesz ideal in a pseudoeffect algebra E. Moreover, we introduce a stronger concept of congruence—namely Riesz strong congruence—and we prove that, if I is a normal weak Riesz ideal in a pseudoeffect algebra E, then ~I is a Riesz strong congruence and, conversely, if ~ is a Riesz strong congruence, then I =  [0]~ is a normal weak Riesz ideal, and ~I = ~.
引用
收藏
页码:487 / 492
页数:5
相关论文
共 22 条
  • [1] Avallone A(2003)Congruences and ideals of effect algebras Order 20 67-77
  • [2] Vitolo P(2000)Some ideal lattices in partial Abelian monoids and effect algebras Order 17 72-92
  • [3] Chevalier G(2001)Congruences and states on pseudoeffect algebras Found Phys Lett 14 5-701
  • [4] Pulmannová S(2001)Pseudoeffect algebras. I. Basic properties Inter J Theor Phys 40 685-701
  • [5] Dvurečenskij A(2001)Pseudoeffect algebras. II.Group representations Inter J Theor Phys 40 685-1352
  • [6] Vetterlein T(1994)Effect algebras and unsharp quantum logics Found Phys 24 1331-135
  • [7] Dvurečenskij A(2001)Pseudo-MV algebras Mult Val Logic 6 95-945
  • [8] Vetterlein T(1989)Towards a formal language for unsharp properties Found Phys 19 931-421
  • [9] Dvurečenskij A(1997)Quotient of partial Abelian monoids Algebra Universalis 38 395-380
  • [10] Vetterlein T(2001)A note on ideals in generalized effect algebras Soft Computing 5 376-85