On the convergence of splitting algorithm for mixed equilibrium problems on Hadamard manifolds

被引:0
作者
K. Khammahawong
P. Kumam
P. Chaipunya
机构
[1] King Mongkut’s University of Technology Thonburi (KMUTT),Department of Mathematics, Faculty of Science
[2] King Mongkut’s University of Technology Thonburi (KMUTT),KMUTTFixed Point Research Laboratory, KMUTT
[3] King Mongkut’s University of Technology Thonburi (KMUTT),Fixed Point Theory and Applications Research Group, Department of Mathematics, Faculty of Science
来源
Journal of Mathematical Chemistry | 2020年 / 58卷
关键词
Equilibrium problems; Hadamard manifolds; Monotonicity; Proximal algorithm; Splitting algorithm; 26B25; 47H05; 47J25; 58A05; 58B20; 90C33;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to introduce a splitting algorithm to solving mixed equilibrium problems on a Hadamard manifold. The convergence of the sequence generated by the proposed algorithm is established under suitable assumptions.
引用
收藏
页码:799 / 815
页数:16
相关论文
共 67 条
  • [1] Adler RL(2002)Newton’s method on Riemannian manifolds and a geometric model for the human spine IMA J. Numer. Anal. 22 359-390
  • [2] Dedieu JP(2012)A Douglas–Rachford splitting method for solving equilibrium problems Nonlinear Anal. 75 6053-6059
  • [3] Margulies JY(2018)Proximal point method for vector optimization on Hadamard manifolds Oper. Res. Lett. 46 13-18
  • [4] Martens M(1994)From optimization and variational inequalities to equilibrium problems Math. Student 63 123-145
  • [5] Shub M(2008)A hybrid iterative scheme for mixed equilibrium problems and fixed point problems J. Comput. Appl. Math. 214 186-201
  • [6] Briceño Arias LM(2015)Nonself KKM maps and corresponding theorems in hadamard manifolds Appl. General Topol. 16 37-979
  • [7] Bento GdC(2019)Algorithms and convergence theorems for mixed equilibrium problems in Hilbert spaces Numer. Funct. Anal. Optim. 40 953-77
  • [8] Ferreira OP(2012)Equilibrium problems in Hadamard manifolds J. Math. Anal. Appl. 388 61-1200
  • [9] Pereira YRL(2005)Signal recovery by proximal forward–backward splitting Multiscale Model. Simul. 4 1168-100
  • [10] Blum E(1998)Geodesic algorithms in Riemannian geometry Balkan J. Geom. Appl. 3 89-113