REDUCTIVE COMPACT HOMOGENEOUS CR MANIFOLDS

被引:0
作者
A. Altomani
C. Medori
M. Nacinovich
机构
[1] University of Luxembourg,Dipartimento di Matematica e Informatica
[2] Mathematics Research Unit,Dipartimento di Matematica
[3] Università di Parma,undefined
[4] II Università di Roma “Tor Vergata”,undefined
来源
Transformation Groups | 2013年 / 18卷
关键词
Maximal Torus; Nilpotent Element; Maximal Compact Subgroup; Borel Subalgebras; Minimal Orbit;
D O I
暂无
中图分类号
学科分类号
摘要
We define and investigate a class of compact homogeneous CR manifolds, that we call \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{n} $$\end{document}-reductive. They are orbits of minimal dimension of a compact Lie group K0 in algebraic affine homogeneous spaces of its complexification K. For these manifolds we obtain canonical equivariant fibrations onto complex flag manifolds, generalizing the Hopf fibration \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {S^3}\to \mathbb{C}{{\mathbb{P}}^1} $$\end{document}. These fibrations are not, in general, CR submersions, but satisfy the weaker condition of being CR-deployments; to obtain CR submersions we need to strengthen their CR structure by lifting the complex stucture of the base.
引用
收藏
页码:289 / 328
页数:39
相关论文
共 35 条
  • [1] Alekseevsky DV(2002)Compact homogeneous CR manifolds J. Geom. Anal. 12 183-201
  • [2] Spiro A(2003)Invariant CR structures on compact homogeneous manifolds Hokkaido Math. J. 32 209-276
  • [3] Alekseevsky DV(2006)The CR structure of minimal orbits in complex flag manifolds J. Lie Theory 16 483-530
  • [4] Spiro A(2010)On homogeneous and symmetric CR manifolds Boll. Unione Mat. Ital. (9) 3 221-265
  • [5] Altomani A(2010)Orbits of real forms in complex flag manifolds Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 9 69-109
  • [6] Medori C(1979)Embeddability of real analytic Cauchy−Riemann manifolds Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 285-304
  • [7] Nacinovich M(1958)On contact manifolds Ann. of Math. (2) 68 721-734
  • [8] Altomani A(1971)Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I Invent. Math. 12 95-104
  • [9] Medori C(2004)Classification des structures CR invariantes pour les groupes de Lie compacts J. Lie Theory 14 165-198
  • [10] Nacinovich M(2002)On the conjugacy theorem of Cartan subalgebras Hiroshima Math. J. 32 155-163