Natural element analysis of the Cahn–Hilliard phase-field model

被引:0
作者
Amirtham Rajagopal
Paul Fischer
Ellen Kuhl
Paul Steinmann
机构
[1] University of Erlangen Nuremberg,Chair of Applied Mechanics
[2] Stanford University,Departments of Mechanical Engineering, Bioengineering and Cardiothoracic Surgery
来源
Computational Mechanics | 2010年 / 46卷
关键词
Cahn–Hilliard equation; Fourth-order diffusion; Phase separation; Higher-order continuity; Natural element method;
D O I
暂无
中图分类号
学科分类号
摘要
We present a natural element method to treat higher-order spatial derivatives in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear partial differential equation that allows to model phase separation in binary mixtures. Standard classical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{C}}^0}$$\end{document}-continuous finite element solutions are not suitable because primal variational formulations of fourth-order operators are well-defined and integrable only if the finite element basis functions are piecewise smooth and globally \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{C}}^1}$$\end{document}-continuous. To ensure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{C}}^1}$$\end{document}-continuity, we develop a natural-element-based spatial discretization scheme. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{C}}^1}$$\end{document}-continuous natural element shape functions are achieved by a transformation of the classical Farin interpolant, which is basically obtained by embedding Sibsons natural element coordinates in a Bernstein–Bézier surface representation of a cubic simplex. For the temporal discretization, we apply the (second-order accurate) trapezoidal time integration scheme supplemented with an adaptively adjustable time step size. Numerical examples are presented to demonstrate the efficiency of the computational algorithm in two dimensions. Both periodic Dirichlet and homogeneous Neumann boundary conditions are applied. Also constant and degenerate mobilities are considered. We demonstrate that the use of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{C}}^1}$$\end{document}-continuous natural element shape functions enables the computation of topologically correct solutions on arbitrarily shaped domains.
引用
收藏
页码:471 / 493
页数:22
相关论文
共 79 条
[1]  
Barrett JW(1999)Finite element approximation of cahn hilliard equation with degenerate mobility SIAM J Numer Anal 37 286-318
[2]  
Blowey JF(1959)Free energy of a non uniform system II: thermodynamic basis J Chem Phys 30 1121-1124
[3]  
Garcke H(1958)Free energy of a non uniform system I: interfacial free energy J Chem Phys 28 258-267
[4]  
Cahn JW(1959)Free energy of a nonuniform system III: nucleation in a two component incompressible fluid J Chem Phys 31 688-699
[5]  
Cahn JW(1998)Conservative nonlinear difference scheme for the Cahn–Hilliard equation—part I Comput Math Appl 36 31-39
[6]  
Hilliard JE(1992)Numerical analysis of the Cahn–Hilliard equation with a lograthmic free energy Numer Math 63 39-65
[7]  
Cahn JW(2003)Overview and recent advances in natural neighbour Galerkin methods Arch Comput Methods Eng 10 307-384
[8]  
Hilliard JE(2002)Area preserving curve shortening flows: from phase transitions to image processing Interfaces Free Boundaries 4 325-343
[9]  
Choo SM(1989)A non conforming finite element method for the two-dimensional Cahn–Hilliard equation SIAM J Numer Anal 26 884-903
[10]  
Chung SK(1992)Cahn–Hilliard theory and irreversible thermodynamics J Non-Equilibrium Thermodyn 17 53-65