The Weil Algebra of a Hopf Algebra I: A Noncommutative Framework

被引:0
作者
Michel Dubois-Violette
Giovanni Landi
机构
[1] Université Paris XI,Laboratoire de Physique Théorique, UMR 8627
[2] Università di Trieste,Dipartimento di Matematica
[3] INFN,Sezione di Trieste
来源
Communications in Mathematical Physics | 2014年 / 326卷
关键词
Hopf Algebra; Principal Bundle; Differential Algebra; Grade Vector Space; Cyclic Cohomology;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize the notion, introduced by Henri Cartan, of an operation of a Lie algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document} in a graded differential algebra Ω. We define the notion of an operation of a Hopf algebra H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} in a graded differential algebra Ω which is referred to as a H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}-operation. We then generalize for such an operation the notion of algebraic connection. Finally we discuss the corresponding noncommutative version of the Weil algebra: The Weil algebra W(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W(\mathcal{H})}$$\end{document} of the Hopf algebra H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} is the universal initial object of the category of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}-operations with connections.
引用
收藏
页码:851 / 874
页数:23
相关论文
共 40 条
[1]  
Alekseev A.(2000)The non-commutative Weil algebra Inv. Math. 139 135-172
[2]  
Meinrenken E.(1993)An introduction to noncommutative differential geometry on quantum groups Int. J. Mod. Phys. A 8 1667-1706
[3]  
Aschieri P.(2012)Differential and twistor geometry of the quantum Hopf fibration Commun. Math. Phys. 315 489-530
[4]  
Castellani L.(1993)Quantum group gauge theory on quantum spaces Commun. Math. Phys. 157 591-638
[5]  
Brain S.(1995)Erratum Commun. Math. Phys. 167 235-579
[6]  
Landi G.(2002)Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples Commun. Math. Phys. 230 539-159
[7]  
Brzeziński T.(2001)Noncommutative manifolds, the instanton algebra and isospectral deformations Commun. Math. Phys. 221 141-246
[8]  
Majid S.(1998)Hopf algebras, cyclic cohomology and the transverse index theorem Commun. Math. Phys. 198 199-108
[9]  
Brzeziński T.(1999)Cyclic cohomology and Hopf algebras Lett. Math. Phys. 48 97-28
[10]  
Majid S.(2000)Cyclic cohomology and Hopf algebra symmetry Lett. Math. Phys. 53 1-263