Fractional Type Integral Operators on Variable Hardy Spaces

被引:1
作者
P. Rocha
M. Urciuolo
机构
[1] FaMAF-Ciem (UNC-Conicet) Medina Allende s/n,
[2] Ciudad Universitaria,undefined
来源
Acta Mathematica Hungarica | 2014年 / 143卷
关键词
Hardy space; variable exponent; fractional operator; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
Given certain n × n invertible matrices A1, . . . , Am and 0 ≦ α < n, we obtain the Hp(.)(Rn)→Lq(.)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^{p(.)}(\mathbb{R}^n) \to L^{q(.)}(\mathbb{R}^n)}$$\end{document} boundedness of the integral operator with kernel k(x,y)=|x-A1y|-α1...|x-Amy|-αm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k(x, y) = |x - A_1y|^{-\alpha_1} . . . |x - A_my|^{-\alpha_m}}$$\end{document}, where α1 +  . . . + αm = n − α and p(.), q(.) are exponent functions satisfying log-Hölder continuity conditions locally and at infinity related by 1q(.)=1p(.)-αn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{q(.)} = \frac{1}{p(.)} - \frac{\alpha}{n}}$$\end{document}. We also obtain the Hp(.)(Rn)→Hq(.)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^{p(.)}(\mathbb{R}^n) \to H^{q(.)}(\mathbb{R}^n)}$$\end{document} boundedness of the Riesz potential operator.
引用
收藏
页码:502 / 514
页数:12
相关论文
共 20 条
[1]  
Capone C.(2007)The fractional maximal operator and fractional integral on variable Rev. Mat. Iberoam. 23 743-770
[2]  
Cruz Uribe D. V.(2004) spaces Math. Inequal. Appl. 7 245-253
[3]  
Fiorenza A.(2003)Maximal functions on generalized J. Reine Angew. Math. 563 197-220
[4]  
Diening L.(1972) spaces Acta Math. 129 137-193
[5]  
Diening L.(1991)Calderón–Zygmund operators on generalized Lebesgue spaces Czech. Math. J. 41 592-618
[6]  
Ruzicka M.(1974) and problems related to fluid dynamics Trans. Amer. Math. Soc. 192 261-274
[7]  
Fefferman C.(2012) spaces of several variables Journal of Funt. Anal. 262 3665-3748
[8]  
Stein E. M.(2012)On spaces Czech. Math. J. 62 625-635
[9]  
Kováčik O.(1960) and Acta Math. 103 25-62
[10]  
Rákosník J.(1980)Weighted norm inequalities for fractional integrals Astérisque 77 67-149