Propagation of TM waves in a layer with arbitrary nonlinearity

被引:0
作者
D. V. Valovik
机构
[1] Penza State University,
来源
Computational Mathematics and Mathematical Physics | 2011年 / 51卷
关键词
nonlinear boundary eigenvalue problem for Maxwell’s equations; nonlinear layer; dispersion equation; numerical-analytical solution method;
D O I
暂无
中图分类号
学科分类号
摘要
A boundary value problem for Maxwell’s equations describing propagation of TM waves in a nonlinear dielectric layer with arbitrary nonlinearity is considered. The layer is located between two linear semi-infinite media. The problem is reduced to a nonlinear boundary eigenvalue problem for a system of second-order nonlinear ordinary differential equations. A dispersion equation for the eigenvalues of the problem (propagation constants) is derived. For a given nonlinearity function, the dispersion equation can be studied both analytically and numerically. A sufficient condition for the existence of at least one eigenvalue is formulated.
引用
收藏
页码:1622 / 1632
页数:10
相关论文
共 18 条
  • [1] Eleonskii P. N.(1972)Cylindrical Nonlinear Waveguides Sov. Phys. JETP 35 44-47
  • [2] Oganes’yants L. G.(1998)TE-Polarized Waves Guided by a Lossness Nonlinear Three-Layer Structure Phys. Rev. 58 1040-1050
  • [3] Silin V. P.(1987)Exact Field Decomposition for TM Waves in Nonlinear Media Opt. Lett. 12 826-828
  • [4] Schürmann H. W.(1991)Scattering of Transverse-Magnetic Waves with a Nonlinear Film: Formal Field Solutions in Quadratures Phys. Rev. B 44 5007-5012
  • [5] Serov V. S.(2008)Propagation of TM Waves in a Kerr Nonlinear Layer Comput. Math. Math. Phys. 48 2217-2225
  • [6] Shestopalov Yu. V.(2008)Calculation of the Propagation Constants of TM Electromagnetic Waves in a Nonlinear Layer J. Commun. Technol. Electron. 53 883-889
  • [7] Joseph R. I.(2009)Calculation of the Propagation Constants and Fields of Polarized Electromagnetic TM Waves in a Nonlinear Anisotropic Layer J. Commun. Technol. Electron. 54 391-398
  • [8] Christodoulides D. N.(2004)Propagation of Electromagnetic Waves in Cylindrical Dielectric Waveguides Filled with a Nonlinear Medium Comput. Math. Math. Phys. 44 1762-1772
  • [9] Leung K. M.(undefined)undefined undefined undefined undefined-undefined
  • [10] Lin R. L.(undefined)undefined undefined undefined undefined-undefined