Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations

被引:0
作者
Guang-hua Gao
Zhi-zhong Sun
机构
[1] Nanjing University of Posts and Telecommunications,College of Science
[2] Southeast University,Department of Mathematics
来源
Numerical Algorithms | 2017年 / 74卷
关键词
Distributed order; Fractional derivative; Difference scheme; Stability; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
Two difference schemes are derived for numerically solving the one-dimensional time distributed-order fractional wave equations. It is proved that the schemes are unconditionally stable and convergent in the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }$\end{document} norm with the convergence orders O(τ2 + h2+Δγ2) and O(τ2 + h4+Δγ4), respectively, where τ,h, and Δγ are the step sizes in time, space, and distributed order. A numerical example is implemented to confirm the theoretical results.
引用
收藏
页码:675 / 697
页数:22
相关论文
共 68 条
[1]  
Caputo M(2003)Diffusion with space memory modelled with distributed order space fractional differential equations Ann. Geophys. 46 223-234
[2]  
Caputo M(2001)Distributed order differential equations modelling dielectric induction and diffusion Fract. Calc. Appl. Anal. 4 421-442
[3]  
Chechkin AV(2002)Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations Phys. Rev. E 66 046129-281
[4]  
Gorenflo R(2008)Distributed order calculus and equations of ultraslow diffusion J. Math. Anal. Appl. 340 252-228
[5]  
Sokolov IM(2011)Distributed-order fractional diffusions on bounded domains J. Math. Anal. Appl 379 216-422
[6]  
Kochubei A(2011)Fractional Langevin equations of distributed order Phys. Rev. E 031136 83-2981
[7]  
Mark M(2009)Boundary value problems for the generalized time-fractional diffusion equation of distributed order Fract. Calc. Appl. Anal. 12 409-656
[8]  
Nane E(2012)Distributed order equations as boundary value problems Comput. Math. Appl. 64 2973-542
[9]  
Eab CH(2009)Existence and calculation of the solution to the time distributed order diffusion equation Phys. Scr. T136 014012-104
[10]  
Lim SC(2010)Explicit solution of the space-time fractional Klein-Gordon equation of distributed order via the Fox H-functions Middle East J. Sci. Res 6 647-22